We conduct theoretical and applied research for wearable computing systems and machine learning algorithms for engineering applications at the intersection of sports and health care. Our motivation is generating a positive impact on human wellbeing, be it through increasing performance, maintaining health, improving rehabilitation, or monitoring disease.
Research projects
Several gait analysis projects are concerned with determining disease progression
Disease classification and fall-risk using wearable IMU-based sensors
Projects in the biomedical analysis field extract meaning from human body signals like the heart
Current projects
Center for AI in Medicine
(Own Funds)
Term: since 1. May 2024
Federated virtual twins for privacy-preserving personalised outcome prediction of type 2 diabetes treatment
(Third Party Funds Single)
Term: 1. January 2024 - 31. December 2028
Funding source: EU - 9. Rahmenprogramm - Horizon Europe
URL: https://daibetes.eu/
Virtual twins have the potential to be used as prognostic tools in precision medicine to support individualized disease management. However, training these models requires large volumes of data from various sources, which is challenging due to privacy regulations like the General Data Protection Regulation (GDPR). Recently, privacy-preserving computational methods, such as federated learning, have emerged, offering a way to utilize extensive data effectively while protecting sensitive patient information.
In dAIbetes, our main medical objective is to provide personalized predictions of treatment outcomes for type 2 diabetes, a condition affecting 1 in 10 adults globally and leading to annual costs of approximately 893 billion EUR. Although healthcare professionals are improving at addressing diabetes risk factors like diet and exercise, there are currently no guidelines for predicting treatment outcomes tailored to individual patients.
dAIbetes brings together advaned expertise in federated learning, artificial intelligence, cybersecurity, diabetes data standardization, clinical validation, as well as in legal and ethical evaluation of applying advanced federated machine learning to personalized medicine. 13 Partners from 13 European countries and the US will jointly implement the project which is structured into 9 Work Packages (WP1-WP9). At FAU, we are working on WP3, i.e., the development of virtual twin apps for training of virtual twin models that will use data from type 2 diabetes patients.
Automatisierte Kuratierung von in-vivo erfassten Zeitreihen
(Third Party Funds Single)
Term: 1. January 2024 - 31. December 2026Funding source: Bayerisches Staatsministerium für Wirtschaft, Landesentwicklung und Energie (StMWi) (seit 2018)
Smart Wound Dressing incorporating Dye-based Sensors Monitoring of O2, pH and CO2 under the wound dressing and smart algorithms to assess the wound healing process
(Third Party Funds Single)
Term: 1. September 2023 - 31. July 2026Funding source: Bayerische Forschungsstiftung
In Germany alone, the number of patients with chronic wound healing disorders is estimated at around 2.7 million. According to projections, the treatment of chronic wounds accounts for € 23 - 36 billion per year. Of the treatment costs for chronic wounds, 4.6 to 7.2 billion € alone are accounted for by the associated cost-intensive dressing materials. The aim of the SWODDYS project is to research the fundamentals for a new type of intelligent wound dressing for the treatment of acute and chronic wounds, which can monitor the energy-metabolic tissue and wound healing status individually for each patient and online by integrating fluorescent dye-based oxygen, pH and CO2 sensors.
Privacy-preserving analysis of distributed medical data
(Own Funds)
Term: since 1. July 2023
Recent legislative development, such as the European Health Data Space, expand access to anonymizied health data for various entities. While these advances offer opportunities for medical research and innovation, they also increase the risk of compromising individuals' privacy.
This project addresses the critical tension between the growing utility of health data and the need to protect individual privacy through organizational, infrastructural, and technical approaches. A key component of the technical solutions is privacy-enhancing technologies (PETs), such as secure multi-party computation and (local) differential privacy, which safeguard individuals' privacy while enabling the statistical analysis of aggregate data.
Testing and Experimentation Facility for Health AI and Robotics
(Third Party Funds Group – Sub project)
Overall project: Testing and Experimentation Facility for Health AI and Robotics
Term: 1. January 2023 - 31. December 2027
Funding source: Europäische Union (EU)
URL: https://www.tefhealth.eu/
The EU project TEF-Health aims to test and validate innovative artificial intelligence (AI) and robotics solutions for the healthcare sector and accelerate their path to market. It is led by Prof. Petra Ritter, who heads the Brain Simulation Section at the Berlin Institute of Health at Charité (BIH) and at the Department of Neurology and Experimental Neurology of Charité – Universitätsmedizin Berlin. The MaD Lab of the FAU is one of the 51 participating project partners from nine European countries.
Digital health application for the therapy of incontinence patients
(Third Party Funds Single)
Term: since 1. January 2023Funding source: Bundesministerium für Wirtschaft und Klimaschutz (BMWK)
The goal of this project is the development of an application for supporting the physical rehabilitation therapy of prostatectomy and incontinence patients in planning and execution. An AI-driven algorithm for automatic planning will be developed and extended by a machine learning approach for live exercise execution feedback. The developed application will be clinically evaluated regarding effectiveness and therapy benefit.
Applied Data Science in Digital Psychology
(Third Party Funds Single)
Term: 1. September 2022 - 31. August 2026Funding source: Bayerisches Staatsministerium für Wissenschaft und Kunst (StMWK) (seit 2018)
University education in psychology, medical technology and computer science currently focuses on teaching basic methods and knowledge with little involvement of other disciplines. Increasing digitalization and the ever more rapid spread of digital technologies, such as wearable sensors, smartphone apps, and artificial intelligence, also in the health sector, offer a wide range of opportunities to address psychological issues from new and interdisciplinary perspectives. However, this requires close cooperation between the disciplines of psychology and technical disciplines such as medical technology and computer science to enable the necessary knowledge transfer. Especially in these disciplines, there is a considerable need for innovative and interdisciplinary teaching concepts and research projects that teach the adequate use of digital technologies and explore the application of these technologies to relevant issues in order to enable better care in the treatment of people with mental disorders.
Multimodal Machine Learning for Decision Support Systems
(Third Party Funds Single)
Term: since 1. June 2022Funding source: Siemens AG
The project aims to identify areas where advanced data analysis and processing methods can be applied to aspects of computer tomography (CT) technology. Furthermore included is the implementation and validation of said methods.
In this project, we analyze machine and customer data sent by thousands of high-end medical devices every day.
Since potentially relevant Information is often presented in different modalities, the optimal application of fusion techniques is a key factor when extracting insights.
Machine Learning for CT-Detector Production
(Third Party Funds Single)
Term: since 1. April 2022Funding source: Industrie
The main goal of this project is to improve the detector manufacturing for computer tomography (CT). Therefore, data is gathered during the production of a CT-detector. This data is analysed and used to develop and train a machine learning system which should find the best composition of a CT-detector. In the future, the system will be integrated into the process of CT-detector manufacturing which, in result, should further improve the image quality and the production process of CT-devices. Especially, the warehouse utilization and the first-pass-yield should be enhaced. The project is realized in cooperation with Siemens Healthineers Frochheim.
Trusted Ecosystem of Applied Medical Data eXchange; Teilvorhaben: FAU@TEAM-X
(Third Party Funds Group – Sub project)
Overall project: Trusted Ecosystem of Applied Medical Data eXchange (TEAM-X)Term: 1. January 2022 - 31. March 2025Funding source: Bundesministerium für Wirtschaft und Technologie (BMWi)
dhip campus-bavarian aim
(Third Party Funds Group – Overall project)
Term: 1. October 2021 - 30. September 2027Funding source: Industrie
Empatho-Kinaesthetic Sensor Technology
(Third Party Funds Group – Overall project)
Term: 1. July 2021 - 30. June 2025
Funding source: DFG / Sonderforschungsbereich / Transregio (SFB / TRR)
URL: https://empkins.de/
The proposed CRC “Empathokinaesthetic Sensor Technology” (EmpkinS) will investigate novel radar, wireless, depth camera, and photonics based sensor technologies as well as body function models and algorithms. The primary objective of EmpkinS is to capture human motion parameters remotely with wave-based sensors to enable the identification and analysis of physiological and behavioural states and body functions. To this end, EmpkinS aims to develop sensor technologies and facilitate the collection of motion data for the human body. Based on this data of hitherto unknown quantity and quality, EmpkinS will lead to unprecedented new insights regarding biomechanical, medical, and psychophysiological body function models and mechanisms of action as well as their interdependencies.The main focus of EmpkinS is on capturing human motion parameters at the macroscopic level (the human body or segments thereof and the cardiopulmonary function) and at the microscopic level (facial expressions and fasciculations). The acquired data are captured remotely in a minimally disturbing and non-invasive manner and with very high resolution. The physiological and behavioural states underlying the motion pattern are then reconstructed algorithmically from this data, using biomechanical, neuromotor, and psychomotor body function models. The sensors, body function models, and the inversion of mechanisms of action establish a link between the internal biomedical body layers and the outer biomedical technology layers. Research into this link is highly innovative, extraordinarily complex, and many of its facets have not been investigated so far.To address the numerous and multifaceted research challenges, the EmpkinS CRC is designed as an interdisciplinary research programme. The research programme is coherently aligned along the sensor chain from the primary sensor technology (Research Area A) over signal and data processing (Research Areas B and C) and the associated modelling of the internal body functions and processes (Research Areas C and D) to the psychological and medical interpretation of the sensor data (Research Area D). Ethics research (Research Area E) is an integral part of the research programme to ensure responsible research and ethical use of EmpkinS technology.The proposed twelve-year EmpkinS research programme will develop novel methodologies and technologies that will generate cutting-edge knowledge to link biomedical processes inside the human body with the information captured outside the body by wireless and microwave sensor technology. With this quantum leap in medical technology, EmpkinS will pave the way for completely new "digital", patient-centred diagnosis and therapeutic options in medicine and psychology.Medical technology is a research focus with flagship character in the greater Erlangen-Nürnberg area. This outstanding background along with the extensive preparatory work of the involved researchers form the basis and backbone of EmpkinS.
EmpkinS iRTG - EmpkinS integrated Research Training Group
(Third Party Funds Group – Sub project)
Overall project: Empathokinästhetische Sensorik
Term: 1. July 2021 - 30. June 2025
Funding source: DFG / Sonderforschungsbereich / Integriertes Graduiertenkolleg (SFB / GRK)
URL: https://www.empkins.de/
The integrated Research Training Group (iRTG) offers all young researchers a structured framework programme and supports them in their scientific profile and competence development. The diverse measures provided enable the young researchers to work on their respective academic qualifications in a structured and targeted manner. Particular attention is paid to their networking and their ability to communicate intensively and to take responsibility for their own scientific work. The doctoral researchers are supervised by two project leaders.
Sensorbasierte Bewegungs- und Schlafanalyse beim Parkinson-Syndrom
(Third Party Funds Group – Sub project)
Overall project: Empathokinästhetische Sensorik
Term: 1. July 2021 - 30. June 2025
Funding source: DFG / Sonderforschungsbereich (SFB)
URL: https://www.empkins.de/
In D04, innovative, non-contact EmpkinS sensor technology using machine learning algorithms and multimodal reference diagnostics is evaluated using the example of Parkinson’s-associated sleep disorder patterns. For this purpose, body function parameters of sleep are technically validated with wearable sensor technology and non-contact EmpkinS sensor technology in comparison to classical poly-somnography and correlated to clinical scales. In an algorithmic approach, multiparametric sleep parameters and sleep patterns are then evalulated in correlation to movement, cardiovascular and sleep phase regulation disorders.
Empathokinästhetische Sensorik für Biofeedback bei depressiven Patienten
(Third Party Funds Group – Sub project)
Overall project: Empathokinästhetische Sensorik
Term: 1. July 2021 - 30. June 2025
Funding source: DFG / Sonderforschungsbereich (SFB)
URL: https://www.empkins.de/
The aim of the D02 project is the establishment of empathokinesthetic sensor technology and methods of machine learning as a means for the automatic detection and modification of depression-associated facial expressions, posture, and movement. The aim is to clarify to what extent, with the help of kinesthetic-related modifications influence depressogenic information processing and/or depressive symptoms. First, we will record facial expressions, body posture, and movement relevant to depression with the help of currently available technologies (e.g., RGB and depth cameras, wired EMG, established emotion recognition software) and use them as input parameters for new machine learning models to automatically detect depression-associated affect expressions. Secondly, a fully automated biofeedback paradigm is to be implemented and validated using the project results available up to that point. More ways of real-time feedback of depression-relevant kinaesthesia are investigated. Thirdly, we will research possibilities of mobile use of the biofeedback approach developed up to then.
Erforschung der posturalen Kontrolle basierend auf sensomotorisch erweiterten muskuloskelettalen Menschmodellen
(Third Party Funds Group – Sub project)
Overall project: Empathokinästhetische Sensorik
Term: 1. July 2021 - 30. June 2025
Funding source: DFG / Sonderforschungsbereich (SFB)
URL: https://www.empkins.de/
A novel postural control model of walking is explored to characterise the components of dynamic balance control. For this purpose, clinically annotated gait movements are used as input data and muscle actuated multi-body models are extended by a sensorimotor level. Neuromotor and control model parameters of (patho-)physiological movement are identified with the help of machine learning methods. Technical and clinical validation of the models will be performed. New EmpkinS measurement techniques are to be transferred to the developed models as soon as possible.
Recent publications
2024
Abel, L., Richer, R., Hauck, F., Kurz, M., Ringgold, V., Schindler-Gmelch, L.,... Rohleder, N. (2024, February). Does acute stress exposure change gait patterns? Poster presentation.
Albert, T., Eskofier, B., & Zanca, D. (2024). From patches to objects: exploiting spatial reasoning for better visual representations . Discover Applied Sciences , 6 (5). https://doi.org/10.1007/s42452-024-05894-2
Albrecht, N., Langer, D., Krauß, D., Richer, R., Abel, L., Eskofier, B.,... Kölpin, A. (2024). EmRad: Ubiquitous Vital Sign Sensing using Compact Continuous-Wave Radars . IEEE Open Journal of Engineering in Medicine and Biology , 1-10. https://doi.org/10.1109/OJEMB.2024.3420241
Altmannshofer, S., Flaucher, M., Beierlein, M., Eskofier, B., Beckmann, M., Fasching, P., & Hübner, H. (2024). A content-based review of mobile health applications for breast cancer prevention and education: Characteristics, quality and functionality analysis . Digital Health , 10 . https://doi.org/10.1177/20552076241234627
Dietz, S., Altstidl, T.R., Zanca, D., Eskofier, B., & Nguyen, A. (2024). How Intermodal Interaction Affects the Performance of Deep Multimodal Fusion for Mixed-Type Time Series . In IEEE Computational Intelligence Society (Eds.), Proceedings of the International Joint Conference on Neural Networks (IJCNN) . Yokohama, JP.
Eskofier, B., & Vossiek, M. (2024). Invisible Sensing: Radar-based Biomonitoring . IEEE Open Journal of Engineering in Medicine and Biology , 1-2. https://doi.org/10.1109/OJEMB.2024.3409086
Flaucher, M., Prümer, F., Jäger, K., Rolny, J., Trissler, P., Eckl, S.,... Leutheuser, H. (2024). Motivational Factors for Experienced Users of Mobile Health Applications in Heart Failure Management . In NordiCHI '24 Adjunct: Adjunct Proceedings of the 2024 Nordic Conference on Human-Computer Interaction (pp. 1-5). Uppsala, SE: New York City: Association for Computing Machinery.
Fleischmann, S., Dietz, S., Shanbhag, J., Wünsch, A., Nitschke, M., Miehling, J.,... Koelewijn, A. (2024). Exploring Dataset
Bias and Scaling Techniques in Multi-Source Gait Biomechanics: An Explainable
Machine Learning Approach . ACM Transactions on Intelligent Systems and Technology , 20 (1). https://doi.org/10.1145/3702646
Förstel, S., Förstel, M., Gallistl, M., Zanca, D., Eskofier, B., & Rothgang, E.M. (2024). Data quality in hospital information systems: Lessons learned from analyzing 30 years of patient data in a regional German hospital . International Journal of Medical Informatics , 192 . https://doi.org/10.1016/j.ijmedinf.2024.105636
Grießhammer, S., Malessa, A., Lu, H., Yip, J., Leuschner, J., Christgau, F.,... Ostgathe, C. (2024). Contactless radar-based heart rate estimation in palliative care – a feasibility study and possible use in symptom management . BMC Palliative Care , 23 . https://doi.org/10.1186/s12904-024-01592-3
Grube, L., Petit, P., Vuillerme, N., Nitschke, M., Nwosu, O.B., Knitza, J.,... Morf, H. (2024). Complementary App-Based Yoga Home Exercise Therapy for Patients With Axial Spondyloarthritis: Usability Study . JMIR Formative Research , 8 . https://doi.org/10.2196/57185
Ibrahim, A., Ollenschläger, M., Klebe, S., Schüle, R., Jeschonneck, N., Kellner, M.,... Regensburger, M. (2024). Mobile digital gait analysis captures effects of botulinum toxin in hereditary spastic paraplegia . European Journal of Neurology . https://doi.org/10.1111/ene.16367
Jäger, K., Nissen, M., Flaucher, M., Graf, L., Joanidopoulos, J., Anneken, L.,... Leutheuser, H. (2024). Systematic Comparison of ECG Delineation Algorithm Performance on Smartwatch Data . IEEE Access , 12 , 160794-160804. https://doi.org/10.1109/ACCESS.2024.3487013
Jäger, K., Nissen, M., Rahm, S., Titzmann, A., Fasching, P., Beilner, J.,... Leutheuser, H. (2024). Power-MF: Robust fetal QRS detection from non-invasive fetal electrocardiogram recordings . Physiological Measurement . https://doi.org/10.1088/1361-6579/ad4952
Keinert, M., Schindler-Gmelch, L., Eskofier, B., & Berking, M. (2024). An Anger-based Approach-Avoidance Modification Training Targeting Dysfunctional Beliefs in Adults with Elevated Stress – Results from a Randomized Controlled Pilot Study . International Journal of Cognitive Therapy . https://doi.org/10.1007/s41811-024-00218-z
Keinert, M., Schindler-Gmelch, L., Rupp, L., Sadeghi, M., Capito, K., Hager, M.,... Berking, M. (2024). Facing depression: evaluating the efficacy of the EmpkinS-EKSpression reappraisal training augmented with facial expressions – protocol of a randomized controlled trial . BMC Psychiatry , 24 . https://doi.org/10.1186/s12888-024-06361-3
Kirk, C., Küderle, A., Micó-Amigo, M.E., Bonci, T., Paraschiv-Ionescu, A., Ullrich, M.,... Del Din, S. (2024). Mobilise-D insights to estimate real-world walking speed in multiple conditions with a wearable device . Scientific Reports , 14 (1). https://doi.org/10.1038/s41598-024-51766-5
Klede, K., Altstidl, T.R., Zanca, D., & Eskofier, B. (2024). The Impact of Random Models on Standardized Clustering Similarity . IEEE Access . https://doi.org/10.1109/ACCESS.2024.3507133
Kluge, F., Brand, Y.E., Micó-Amigo, M.E., Bertuletti, S., D'Ascanio, I., Gazit, E.,... Mueller, A. (2024). Real-World Gait Detection Using a Wrist-Worn Inertial Sensor: Validation Study . JMIR Formative Research , 8 . https://doi.org/10.2196/50035
Krauß, D., Engel, L., Ott, T., Bräunig, J., Richer, R., Gambietz, M.,... Vossiek, M. (2024). A Review and Tutorial on Machine Learning- Enabled Radar-Based Biomedical Monitoring . IEEE Open Journal of Engineering in Medicine and Biology , 1-22. https://doi.org/10.1109/OJEMB.2024.3397208
Kudelka, J., Ollenschläger, M., Dodel, R., Eskofier, B., Hobert, M.A., Jahn, K.,... Jacobs, A.H. (2024). Which Comprehensive Geriatric Assessment (CGA) instruments are currently used in Germany: a survey . BMC Geriatrics , 24 (1). https://doi.org/10.1186/s12877-024-04913-6
Kurz, M., Richer, R., Abel, L., Hauck, F., Ringgold, V., Schindler-Gmelch, L.,... Rohleder, N. (2024, February). f-TSST+: An extension to the friendly Trier Social Stress Test that enables better behavioral comparability during acute psychosocial stress . Poster presentation.
Küderle, A., Ullrich, M., Roth, N., Ollenschläger, M., Ibrahim, A., Moradi, H.,... Eskofier, B. (2024). Gaitmap – An Open Ecosystem for IMU-based Human Gait Analysis and Algorithm Benchmarking . IEEE Open Journal of Engineering in Medicine and Biology , 1-10. https://doi.org/10.1109/OJEMB.2024.3356791
Laudanski, A.F., Küderle, A., Kluge, F., Eskofier, B., & Acker, S.M. (2024). Enhancing Automatic Inertial Sensor Calibration Algorithm for Accurate Joint Angle Estimation in High Flexion Postures . IEEE Sensors Journal , 1-1. https://doi.org/10.1109/JSEN.2024.3423374
Lennartz, R., Khassetarash, A., R. Nigg, S., Eskofier, B., & Nigg, B.M. (2024). Neural network and layer-wise relevance propagation reveal how ice hockey protective equipment restricts players’ motion . PLoS ONE , 19 , e0312268. https://doi.org/10.1371/journal.pone.0312268
Lennartz, R., Stöve, M., Talar, K., Kumarampulakkal, N., Dorschky, E., Witte, M., & Eskofier, B. (2024, July). The Influence of Gamification on Motivation and Cardiac Variables in Soccer . Paper presentation at 29th Annual Congress of the European College of Sport Science, Glasgow, Scotland, UK.
Lüer, L., Peters, I.M., Smith, A.-S., Dorschky, E., Eskofier, B., Liers-Bergmann, F.,... Brabec, C. (2024). A digital twin to overcome long-time challenges in photovoltaics . Joule , 8 , 1-17. https://doi.org/10.1016/j.joule.2023.12.010
Meier, J.J., Weigand, C., Bauer, J., & Eskofier, B. (2024). MANAGEMENT BY DIGITAL RESPONSIBILITY IN HEALTH ORGANIZATIONS . In Ajith Abraham, Guo Chao Peng, Pedro Isaias, Pedro Isaias (Eds.), Proceedings of the International Conferences on Big Data Analytics, Data Mining and Computational Intelligence 2024, BigDaCI 2024; Connected Smart Cities 2024, CSC 2024; and e-Health 2024, EH 2024 (pp. 233-238). Budapest, HUN: IADIS.
Micó-Amigo, M.E., Bonci, T., Paraschiv-Ionescu, A., Ullrich, M., Kirk, C., Soltani, A.,... Del Din, S. (2024). Correction to: Assessing real-world gait with digital technology? Validation, insights and recommendations from the Mobilise-D consortium (Journal of NeuroEngineering and Rehabilitation, (2023), 20, 1, (78), 10.1186/s12984-023-01198-5) . Journal of neuroEngineering and rehabilitation , 21 (1). https://doi.org/10.1186/s12984-024-01361-6
Moradi, H., Flaucher, M., Ott, T., Ringgold, V., Eskofier, B., & Leutheuser, H. (2024). Can HCI Lead the Way? Workshop on Exploring Conscious AI . Gesellschaft für Informatik e.V..
Müller, J., Krauß, D., Engel, L., Vossiek, M., Eskofier, B., & Dorschky, E. (2024). End-to-End Learning for Human Pose Estimation from Raw Millimeter Wave Radar Data . In Proceedings of the Asilomar Conference on Signals, Systems, and Computers .
Nissen, M., Huang, S.-Y., Jäger, K., Flaucher, M., Titzmann, A., Bleher, H.,... Leutheuser, H. (2024). Smartphone pregnancy apps: systematic analysis of features, scientific guidance, commercialization, and user perception . BMC Pregnancy and Childbirth , 24 . https://doi.org/10.1186/s12884-024-06959-1
Nitschke, M., Dorschky, E., Leyendecker, S., Eskofier, B., & Koelewijn, A. (2024). Estimating 3D kinematics and kinetics from virtual inertial sensor data through musculoskeletal movement simulations . Frontiers in Bioengineering and Biotechnology , 12 . https://doi.org/10.3389/fbioe.2024.1285845
Owsienko, D., Schwinn, L., Eskofier, B., Kiesswetter, E., & Loos, H. (2024). Sensory evaluation of axillary odour samples of younger and older adults by a trained panel . Flavour and Fragrance Journal , 39 (1), 3-9. https://doi.org/10.1002/ffj.3762
Raccagni, C., Sidoroff, V., Paraschiv-Ionescu, A., Roth, N., Schönherr, G., Eskofier, B.,... Wenning, G. (2024). Effects of physiotherapy and home-based training in parkinsonian syndromes: protocol for a randomised controlled trial (MobilityAPP) . BMJ Open , 14 (5), e081317-. https://doi.org/10.1136/bmjopen-2023-081317
Richer, R., Abel, L., Mücke, A., Küderle, A., Eskofier, B., & Rohleder, N. (2024, February). CARWatch – An Open-Source Framework for Objective Cortisol Awakening Response Assessment . Poster presentation.
Richer, R., Koch, V., Abel, L., Hauck, F., Kurz, M., Ringgold, V.,... Rohleder, N. (2024). Machine learning-based detection of acute psychosocial stress from body posture and movements . Scientific Reports , 14 . https://doi.org/10.1038/s41598-024-59043-1
Richer, R., Varkentin, E., Kurmanbekova, K., Müller, V., Abel, L., Ringgold, V.,... Eskofier, B. (2024, February). Stress+ – Towards an Open-Source Web Application for the Remote Induction of Acute Psychosocial Stress . Poster presentation.
Richer, R., Zenkner, J.J., Küderle, A., Rohleder, N., & Eskofier, B. (2024, February). Lower Vagal Response to the Cold Face Test during Acute Psychosocial Stress is Associated with Higher Cortisol Reactivity . Poster presentation.
Ringgold, V., Abel, L., Eskofier, B., & Rohleder, N. (2024). Validation of the Virtual Reality Stroop Room: Effects of inhibiting interfering information under time-pressure and task-switching demands . Computers in Human Behavior Reports , 16 . https://doi.org/10.1016/j.chbr.2024.100497
Ringgold, V., Kaiser, P., Eskofier, B., & Rohleder, N. (2024). The Impact of a Deceptive Virtual Agent on Stress Markers in the Virtual Reality Stroop Room . Psychoneuroendocrinology , 160 , 106852. https://doi.org/10.1016/j.psyneuen.2023.106852
Ringgold, V., Shields, G.S., Hauck, F., Kurz, M., Schindler-Gmelch, L., Abel, L.,... Rohleder, N. (2024). The Short Stress State Questionnaire in German (SSSQ-G) . European Journal of Health Psychology , 31 , 189-200. https://doi.org/10.1027/2512-8442/a000160
Roider, J., Nguyen, A., Zanca, D., & Eskofier, B. (2024). Assessing the Performance of Remaining Time Prediction Methods for Business Processes . IEEE Access , 1-19. https://doi.org/10.1109/ACCESS.2024.3459648
Roider, J., Zanca, D., & Eskofier, B. (2024). Efficient Training of Recurrent Neural Networks for Remaining Time Prediction in Predictive Process Monitoring . In Andrea Marrella, Manuel Resinas, Mieke Jans, Michael Rosemann (Eds.), Business Process Management, 22nd International Conference, BPM 2024, Krakow, Poland, September 1–6, 2024, Proceedings (pp. 238 - 255). Krakow, PL: Cham: Springer.
Sadeghi, M., Egger, B., Agahi, R., Richer, R., Capito, K., Rupp, L.,... Eskofier, B. (2024). Exploring the Capabilities of a Language Model-Only Approach for Depression Detection in Text Data . In Proceedings of the Deutscher Psychotherapiekongress (DPK) . Berlin.
Sadeghi, M., Richer, R., Egger, B., Schindler-Gmelch, L., Rupp, L., Rahimi, F.,... Eskofier, B. (2024). Harnessing multimodal approaches for depression detection using large language models and facial expressions . npj Mental Health Research , 3 (1), 66. https://doi.org/10.1038/s44184-024-00112-8
Schlieper, P., Dombrowski, M., Nguyen, A., Zanca, D., & Eskofier, B. (2024). Data-Centric Benchmarking of Neural Network Architectures for the Univariate Time Series Forecasting Task . Forecasting , 6 (3), 718-747. https://doi.org/10.3390/forecast6030037
Schlieper, P., Luft, H., Klede, K., Strohmeyer, C., Eskofier, B., & Zanca, D. (2024). Enhancing unsupervised outlier model selection: A study on ireos algorithms . ACM Transactions on Knowledge Discovery from Data , 18 (7). https://doi.org/10.1145/3653719
Schmidt, M., Sadeghi, M., Rahimi, F., Eskofier, B., Buglagil, A., Schmauß, B., & Carlowitz, C. (2024). Realtime Laser Beam Steering and Calibration Method for Coherent Biomedical Distance and Motion Sensing . In CLEO: Science and Innovations, CLEO: S and I 2024 in Proceedings CLEO 2024, Part of Conference on Lasers and Electro-Optics . Charlotte, NC, USA: Optical Society of America.
Schrupp, B., Klede, K., Raab, R., & Eskofier, B. (2024). Simulation and Detection of Healthcare Fraud in German Inpatient Claims Data . In Franco, L., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (Eds.), Computational Science -- ICCS 2024 (pp. 239--246). Cham: Springer.
Seifer, A.-K., Kuderle, A., Dorschky, E., Moradi, H., Hannemann, R., & Eskofier, B. (2024). Step Length and Gait Speed Estimation using A Hearing Aid Integrated Accelerometer: A Comparison of Different Algorithms . IEEE Journal of Biomedical and Health Informatics . https://doi.org/10.1109/JBHI.2024.3454824
Shanbhag, J., Fleischmann, S., Gaßner, H., Winkler, J., Eskofier, B., Koelewijn, A.,... Miehling, J. (2024). Modelling postural control of upright standing during translational perturbations . Poster presentation at 29th Congress of the European Society of Biomechanics, Edinburgh, Scotland.
Shanbhag, J., Fleischmann, S., Wechsler, I., Gaßner, H., Winkler, J., Eskofier, B.,... Miehling, J. (2024). A sensorimotor enhanced neuromusculoskeletal model for simulating postural control of upright standing . Frontiers in Neuroscience , 18 . https://doi.org/10.3389/fnins.2024.1393749
Simpetru, R., Arkudas, A., Braun, D., Oßwald, M., Souza de Oliveira, D., Eskofier, B.,... Del Vecchio, A. (2024). Learning a Hand Model from Dynamic Movements Using High-Density EMG and Convolutional Neural Networks . IEEE Transactions on Biomedical Engineering , 1-12. https://doi.org/10.1109/TBME.2024.3432800
Souza de Oliveira, D., Ponfick, M., Braun, D., Oßwald, M., Sierotowicz, M., Chatterjee, S.,... Del Vecchio, A. (2024). A direct spinal cord–computer interface enables the control of the paralysed hand in spinal cord injury . Brain , 147 (10), 3583-3595. https://doi.org/10.1093/brain/awae088
Stahlke, M., Feigl, T., Kram, S., Eskofier, B., & Mutschler, C. (2024). Uncertainty-Based Fingerprinting Model Monitoring for Radio Localization . IEEE Journal of Indoor and Seamless Positioning and Navigation .
Stahlke, M., George, Y., Feigl, T., Eskofier, B., & Mutschler, C. (2024). Velocity-Based Channel Charting with Spatial Distribution Map Matching . IEEE Journal of Indoor and Seamless Positioning and Navigation , 1-10. https://doi.org/10.1109/JISPIN.2024.3424768
Stahlke, M., George, Y., Feigl, T., Eskofier, B., & Mutschler, C. (2024). Velocity-Based Channel Charting With Spatial Distribution Map Matching . IEEE Journal of Indoor and Seamless Positioning and Navigation , 2 , 230-239. https://doi.org/10.1109/JISPIN.2024.3424768
Streit, H., Keinert, M., Schindler-Gmelch, L., Eskofier, B., & Berking, M. (2024). Disgust-based approach-avoidance modification training for individuals suffering from elevated stress: A randomized controlled pilot study . Stress and Health . https://doi.org/10.1002/smi.3384
Wechsler, I., Wolf, A., Shanbhag, J., Leyendecker, S., Eskofier, B., Koelewijn, A.,... Miehling, J. (2024). Bridging the sim2real gap. Investigating deviations between experimental motion measurements and musculoskeletal simulation results—a systematic review . Frontiers in Bioengineering and Biotechnology , 12 . https://doi.org/10.3389/fbioe.2024.1386874
Zakreuskaya, A., Buschek, D., Mackay, W.E., Avellino, I., Dove, G., & Eskofier, B. (2024). From Text to Treatment: How Medical Discharge Letters Are Used as a Key Artifact for Managing Patient Care . In ACM International Conference Proceeding Series (pp. 99-109). Karlsruhe, DEU: Association for Computing Machinery.
Zieger, D., Güthlein, F., Henningson, J.-O., Jakob, V., Gaßner, H., Shanbhag, J.,... Stamminger, M. (2024). 3D Body Twin: Improving Human Gait Visualizations Using Personalized Avatars . In ShapeMI 2024 (pp. 70-83). Marrakesh, MA.
Zürl, M., Stoll, P., Brehm, I., Sueskind, J., Raab, R., Petermann, J.,... Eskofier, B. (2024). Automated long-term monitoring of stereotypical movement in polar bears under human care using machine learning . Ecological Informatics , 102840. https://doi.org/10.1016/j.ecoinf.2024.102840
2023
Abdullahi, I., Raab, R., Küderle, A., & Eskofier, B. (2023). Aligning Federated Learning with Existing Trust Structures in Health Care Systems . International Journal of Environmental Research and Public Health , 20 (7). https://doi.org/10.3390/ijerph20075378
Altstidl, T.R., Nguyen, A., Schwinn, L., Köferl, F., Mutschler, C., Eskofier, B., & Zanca, D. (2023). Just a Matter of Scale? Reevaluating Scale Equivariance in Convolutional Neural Networks . In Proc. Intl. Joint Conf. Neural Netw. (IJCNN) (pp. 1-8). Gold Coast, Australia, AU.
Bräunig, J., Mejdani, D., Krauß, D., Grießhammer, S., Richer, R., Schüßler, C.,... Vossiek, M. (2023). Radar-based Recognition of Activities of Daily Living in the Palliative Care Context Using Deep Learning . In 2023 IEEE EMBS International Conference on Biomedical and Health Informatics (BHI) . Pittsburgh, US: New York City: IEEE.
Brückner, S., Weber, J., Michler, F., Shanin, N., Schober, R., Hagelauer, A.,... Vossiek, M. (2023). A Wireless Joint Communication and Localization EMG-Sensing Concept for Movement Disorder Assessment . IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology , 0 (0), 1--10. https://doi.org/10.1109/JERM.2023.3321974
Casolo, A., Maeo, S., Balshaw, T.G., Lanza, M.B., Martin, N.R.W., Nuccio, S.,... Del Vecchio, A. (2023). Non-invasive estimation of muscle fibre size from high-density electromyography . The Journal of Physiology . https://doi.org/10.1113/JP284170
Cerutti, S., Eskofier, B., & Tourassi, G. (2023). Guest Editorial Advancing Biomedical Discovery and Healthcare Delivery Through Digital Technology . IEEE Journal of Biomedical and Health Informatics , 27 (6), 2656-2659. https://doi.org/10.1109/JBHI.2023.3274977
Del Vecchio, A., Marconi Germer, C., Kinfe, T.M., Nuccio, S., Hug, F., Eskofier, B.,... Enoka, R.M. (2023). The Forces Generated by Agonist Muscles during Isometric Contractions Arise from Motor Unit Synergies . The Journal of Neuroscience , 43 (16), 2860-2873. https://doi.org/10.1523/JNEUROSCI.1265-22.2023
Dumbach, P., Schwinn, L., Löhr, T., Do, P.L., & Eskofier, B. (2023). Artificial intelligence trend analysis on healthcare podcasts using topic modeling and sentiment analysis: a data-driven approach . Evolutionary Intelligence . https://doi.org/10.1007/s12065-023-00878-4
Dumbach, P., Schwinn, L., Löhr, T., Elsberger, T., & Eskofier, B. (2023). Artificial intelligence trend analysis in German business and politics: a web mining approach . International Journal of Data Science and Analytics , 1-22. https://doi.org/10.1007/s41060-023-00483-9
Eskofier, B., & Klucken, J. (2023). Predictive Models for Health Deterioration: Understanding Disease Pathways for Personalized Medicine . In (pp. 131-156). Annual Reviews Inc..
Flaucher, M., Zakreuskaya, A., Jäger, K., Richer, R., Smeddinck, J.D., Kumar, D.,... Leutheuser, H. (2023). Your Health, Your Data: Combining Interdisciplinary Views, Concepts, and Practices to Empower Patients in Their Engagement With Personal Health Data . In Workshopband . Rapperswil, CH.
Flaucher, M., Zakreuskaya, A., Nissen, M., Mocker, A., Fasching, P., Beckmann, M.,... Leutheuser, H. (2023). Evaluating the Effectiveness of Mobile Health in Breast Cancer Care: A Systematic Review . Oncologist . https://doi.org/10.1093/oncolo/oyad217
Fleischmann, S., Shanbhag, J., Miehling, J., Wartzack, S., Leyendecker, S., Koelewijn, A., & Eskofier, B. (2023). Time vs. Space: Comparing gait cycle normalization methods and their effect on foot placement control . Poster presentation at 28th Congress of the European Society of Biomechanics, Maastricht, NL.
Gabler, E., Nissen, M., Altstidl, T.R., Titzmann, A., Packhäuser, K., Maier, A.,... Leutheuser, H. (2023). Fetal Re-Identification in Multiple Pregnancy Ultrasound Images Using Deep Learning . In 2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) (pp. 1-4). Sydney, NSW, AU: Institute of Electrical and Electronics Engineers Inc..
Habs, M., Dingermann, T., Bachmeier, B.E., Eskofier, B., Friedrich, B., Prantl, L.,... Koller, M. (2023). Real world evidence (RWE) in phytotherapy: Perspectives for the development of a registry for phytopharmaceuticals Real World Evidence (RWE) in der Phytotherapie: Perspektiven für den Aufbau eines Registers zur Nutzung von Phytopharmaka . Zeitschrift für Allgemeinmedizin . https://doi.org/10.1007/s44266-023-00021-7
Härtl, T., Owsienko, D., Schwinn, L., Hirsch, C., Eskofier, B., Lang, R.,... Loos, H. (2023). Exploring the interrelationship between the skin microbiome and skin volatiles: A pilot study . Frontiers in Ecology and Evolution , 11 . https://doi.org/10.3389/fevo.2023.1107463
Ibrahim, A., Adler, W., Gaßner, H., Rothhammer, V., Kluge, F., & Eskofier, B. (2023). Association between cognition and gait in multiple sclerosis: A smartphone-based longitudinal analysis . International Journal of Medical Informatics , 177 . https://doi.org/10.1016/j.ijmedinf.2023.105145
Keinert, M., Eskofier, B., Schuller, B.W., Böhme, S., & Berking, M. (2023). Evaluating the feasibility and exploring the efficacy of an emotion-based approach-avoidance modification training (eAAMT) in the context of perceived stress in an adult sample — protocol of a parallel randomized controlled pilot study . Pilot and Feasibility Studies , 9 (1). https://doi.org/10.1186/s40814-023-01386-z
Klede, K., Altstidl, T.R., Zanca, D., & Eskofier, B. (2023). p-value Adjustment for Monotonous, Unbiased, and Fast Clustering Comparison . In A. Oh and T. Neumann and A. Globerson and K. Saenko and M. Hardt and S. Levine (Eds.), Advances in Neural Information Processing Systems 36 (pp. 27113–27128). New Orleans, US: Curran Associates, Inc..
Klede, K., Schwinn, L., Zanca, D., & Eskofier, B. (2023). FastAMI - A Monte Carlo Approach to the Adjustment for Chance in Clustering Comparison Metrics . In Proceedings of the AAAI Conference on Artificial Intelligence, 37(7) (pp. 8317-8324). Washington, D.C., US.
Koch, V., Jakob, V., Küderle, A., Ollenschläger, M., Kotter, K., Ibrahim, A.,... Gaßner, H. (2023). Inertial sensor acquired foot elevation parameters validated by Motion capture in a cohort of patients with Hereditary Spastic Paraplegias . Gait & Posture , 100 , 79-80. https://doi.org/10.1016/j.gaitpost.2022.11.071
Krauß, D., Richer, R., Albrecht, N.C., Küderle, A., Abel, L., Leutheuser, H.,... Eskofier, B. (2023, October). Contactless Heart Rate Estimation using a 61 GHz Continuous-Wave Radar . Poster presentation at IEEE-EMBS International Conference on Body Sensor Networks: Sensor and Systems for Digital Health, MIT Media Lab, Boston MA, US.
Küderle, A., Richer, R., Simpetru, R., & Eskofier, B. (2023). tpcp: Tiny Pipelines for Complex Problems - A set of framework independent helpers for algorithms development and evaluation . Journal of Open Source Software , 8 (82), 4953. https://doi.org/10.21105/joss.04953
Lennartz, R., Khassetarash, A., Spyrou, E., Hallihan, A., Eskofier, B., & Nigg, B. (2023, August). The Influence of Protective Equipment on Performance in Ice Hockey . Poster presentation at XXIX Conference of the International Society of Biomechanics (ISB), Fukuoka, JP.
Loris, E., Ollenschläger, M., Greinwalder, T., Eskofier, B., Winkler, J., Gaßner, H., & Regensburger, M. (2023). Mobile digital gait analysis objectively measures progression in hereditary spastic paraplegia . Annals of Clinical and Translational Neurology , 10 (3). https://doi.org/10.1002/acn3.51725
Löffler, C., Fallah, K., Fenu, S., Zanca, D., Eskofier, B., Rozell, C.J., & Mutschler, C. (2023). Active Learning of Ordinal Embeddings: A User Study on Football Data . Transactions on Machine Learning Research , 1-26.
Maier, T., Kamm, L., Heckmann, A., & Eskofier, B. (2023, May). Homogeneous Soil Moisture Sensor with High Repeatability for Different Soil Depths . Poster presentation at Sensor and Measurement Science International 2023, Nuremberg, Germany, DE.
Mayer, K., Del Vecchio, A., Eskofier, B., & Farina, D. (2023). Unsupervised neural decoding of signals recorded by thin-film electrode arrays implanted in muscles using autoencoding with a physiologically derived optimisation criterion . Biomedical Signal Processing and Control , 86 . https://doi.org/10.1016/j.bspc.2023.105178
Mehringer, W., Stöve, M., Krauß, D., Ring, M., Steussloff, F., Güttes, M.,... Eskofier, B. (2023). Author Correction: Virtual reality for assessing stereopsis performance and eye characteristics in Post-COVID (Scientific Reports, (2023), 13, 1, (13167), 10.1038/s41598-023-40263-w) . Scientific Reports , 13 (1). https://doi.org/10.1038/s41598-023-43373-7
Mehringer, W., Stöve, M., Krauß, D., Ring, M., Steussloff, F., Güttes, M.,... Eskofier, B. (2023). Virtual reality for assessing stereopsis performance and eye characteristics in Post-COVID . Scientific Reports , 13 (1), 13167-. https://doi.org/10.1038/s41598-023-40263-w
Micó-Amigo, M.E., Bonci, T., Paraschiv-Ionescu, A., Ullrich, M., Kirk, C., Soltani, A.,... Del Din, S. (2023). Assessing real-world gait with digital technology? Validation, insights and recommendations from the Mobilise-D consortium . Journal of neuroEngineering and rehabilitation , 20 (1). https://doi.org/10.1186/s12984-023-01198-5
Moradi, H., Hannink, J., Stallforth, S., Gladow, T., Ringbauer, S., Mayr, M.,... Eskofier, B. (2023). Monitoring medication optimization in patients with Parkinson’s disease . In 2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) . Sydney, AU.
Nissen, M., Barrios Campo, N., Flaucher, M., Jäger, K., Titzmann, A., Blunck, D.,... Leutheuser, H. (2023). Prevalence and course of pregnancy symptoms using self-reported pregnancy app symptom tracker data . npj Digital Medicine , 6 (1). https://doi.org/10.1038/s41746-023-00935-3
Nissen, M., Flaucher, M., Jäger, K., Hübner, H., Danzberger, N., Titzmann, A.,... Leutheuser, H. (2023). WebPPG: Feasibility and Usability of Self-Performed, Browser-Based Smartphone Photoplethysmography . In 2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) . Sydney, NSW, AU: Institute of Electrical and Electronics Engineers Inc..
Nissen, M., Perez, C.A., Jäger, K., Bleher, H., Flaucher, M., Hübner, H.,... Leutheuser, H. (2023). Usability and Perception of a Wearable-Integrated Digital Maternity Record App in Germany: User Study . JMIR Pediatrics and Parenting , 6 (1). https://doi.org/10.2196/50765
Nitschke, M., Marzilger, R., Leyendecker, S., Eskofier, B., & Koelewijn, A. (2023). Change the direction: 3D optimal control simulation by directly tracking marker and ground reaction force data . PeerJ . https://doi.org/10.7717/peerj.14852
Nitschke, M., Nwosu, O.B., Grube, L., Knitza, J., Seifer, A.-K., Eskofier, B.,... Morf, H. (2023). Refinement and Usability Analysis of an eHealth App for Ankylosing Spondylitis as a Complementary Treatment to Physical Therapy: Development and Usability Study . JMIR Formative Research , 7 . https://doi.org/10.2196/47426
Oesten, M., Richer, R., Abel, L., Rohleder, N., & Eskofier, B. (2023). VoStress – Voice-based Detection of Acute Psychosocial Stress . In 2023 IEEE EMBS International Conference on Biomedical and Health Informatics (BHI) . Pittsburgh, US: IEEE.
Ollenschläger, M., Höfner, P., Ullrich, M., Kluge, F., Greinwalder, T., Loris, E.,... Gaßner, H. (2023). Automated assessment of foot elevation in adults with hereditary spastic paraplegia using inertial measurements and machine learning . Orphanet Journal of Rare Diseases , 18 (1). https://doi.org/10.1186/s13023-023-02854-8
Oppelt, M.P., Foltyn, A., Deuschel, J., Lang, N.R., Holzer, N., Eskofier, B., & Yang, S.H. (2023). ADABase: A Multimodal Dataset for Cognitive Load Estimation . Sensors , 23 (1). https://doi.org/10.3390/s23010340
Pontones, C., Titzmann, A., Hübner, H., Danzberger, N., Rübner, M., Häberle, L.,... Schneider, M. (2023). Feasibility and Acceptance of Self-Guided Mobile Ultrasound among Pregnant Women in Routine Prenatal Care . Journal of Clinical Medicine , 12 (13). https://doi.org/10.3390/jcm12134224
Raab, R., Küderle, A., Zakreuskaya, A., Stern, A.D., Klucken, J., Kaissis, G.,... Eskofier, B. (2023). Federated electronic health records for the European Health Data Space . The Lancet Digital Health , 5 (11), e840-e847. https://doi.org/10.1016/S2589-7500(23)00156-5
Ren, Z., Schuller, B.W., Eskofier, B., Nguyen, T.T., & Nejdl, W. (2023). Guest Editorial Trustworthy and Collaborative AI for Personalised Healthcare Through Edge-of-Things . IEEE Journal of Biomedical and Health Informatics , 27 (11), 5213-5215. https://doi.org/10.1109/JBHI.2023.3322052
Richer, R., Abel, L., Küderle, A., Eskofier, B., & Rohleder, N. (2023). CARWatch – A smartphone application for improving the accuracy of cortisol awakening response sampling . Psychoneuroendocrinology , 151 , 106073. https://doi.org/10.1016/j.psyneuen.2023.106073
Richer, R., Geßler, T., Herzer, L., Abel, L., Küderle, A., Rohleder, N., & Eskofier, B. (2023, October). openTSST – An open web platform for large-scale, video-based motion analysis during acute psychosocial stress . Poster presentation at IEEE-EMBS International Conference on Body Sensor Networks: Sensor and Systems for Digital Health, MIT Media Lab, Boston, MA, US.
Ringgold, V., Mehringer, W., Eskofier, B., & Rohleder, N. (2023). Stroop, Stress, and VR: Developing the Virtual Reality Stroop Room . In Proceedings of the Würtual Reality XR Meeting . Würzburg.
Rodrigues, V.F., da Rosa Righi, R., da Costa, C.A., Zeiser, F.A., Eskofier, B., Maier, A., & Kim, D. (2023). Digital health in smart cities: Rethinking the remote health monitoring architecture on combining edge, fog, and cloud . Health and Technology . https://doi.org/10.1007/s12553-023-00753-3
Romijnders, R., Salis, F., Hansen, C., Küderle, A., Paraschiv-Ionescu, A., Cereatti, A.,... Maetzler, W. (2023). Ecological validity of a deep learning algorithm to detect gait events from real-life walking bouts in mobility-limiting diseases . Frontiers in Neurology , 14 . https://doi.org/10.3389/fneur.2023.1247532
Rupp, L., Capito, K., Gmelch, L.M., Böhme, S., Richer, R., Sadeghi, M.,... Berking, M. (2023). Efficacy of a smartphone-based reappraisal training against
depression and benefits of enhancing it with facial expression . Paper presentation at Society for Psychotherapie Research 54th International Annual Meeting, Dublin, IE.
Rupp, L., Keinert, M., Böhme, S., Gmelch, L.M., Eskofier, B., Schuller, B.W., & Berking, M. (2023). Sadness-Based Approach-Avoidance Modification Training for Subjective Stress in Adults: Pilot Randomized Controlled Trial . JMIR Formative Research , 7 , e50324. https://doi.org/10.2196/50324
Sadeghi, M., Egger, B., Agahi, R., Richer, R., Capito, K., Rupp, L.,... Eskofier, B. (2023). Exploring the Capabilities of a Language Model-Only Approach for Depression Detection in Text Data . In IEEE EMBS International Conference on Biomedical and Health Informatics (BHI) (pp. 5). Pittsburgh, PA, USA, US: IEEE.
Salis, F., Bertuletti, S., Bonci, T., Caruso, M., Scott, K., Alcock, L.,... Cereatti, A. (2023). A multi-sensor wearable system for the assessment of diseased gait in real-world conditions . Frontiers in Bioengineering and Biotechnology , 11 . https://doi.org/10.3389/fbioe.2023.1143248
Scholl, C., Spiegler, M., Ludwig, K., Eskofier, B., Tobola, A., & Zanca, D. (2023). An Integrated Framework for Data Quality Fusion in Embedded Sensor Systems . Sensors , 23 (8). https://doi.org/10.3390/s23083798
Schwinn, L., Raab, R., Nguyen, A., Zanca, D., & Eskofier, B. (2023). Exploring misclassifications of robust neural networks to enhance adversarial attacks . Applied Intelligence . https://doi.org/10.1007/s10489-023-04532-5
Schüßler, C., Hoffmann, M., Wirth, V., Eskofier, B., Weyrich, T., Stamminger, M., & Vossiek, M. (2023). Achieving Efficient and Realistic Full-Radar Simulations and Automatic Data Annotation by Exploiting Ray Meta Data from a Radar Ray Tracing Simulator . In Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) (Grant Number: 44241933) (Eds.), IEEE Xplore . 2023 IEEE Radar Conference (RadarConf23). San Antonio, TX, US, US: IEEE Xplore.
Seifer, A.-K., Dorschky, E., Küderle, A., Moradi, H., Hannemann, R., & Eskofier, B. (2023). EarGait: Estimation of Temporal Gait Parameters from Hearing Aid Integrated Inertial Sensors . Sensors , 23 (14). https://doi.org/10.3390/s23146565
Seifer, A.-K., Popp, F., Richer, R., Gaßner, H., & Eskofier, B. (2023). Improving the Robustness of IMU-based Sit-To-Stand Detection during Simulated Real-World Activities for Different Sensor Positions . In Proceedings of the IEEE Biomedical and Health Informatics Conference . Pittsburgh, US.
Shanbhag, J., Fleischmann, S., Eskofier, B., Koelewijn, A., Wartzack, S., & Miehling, J. (2023). Towards postural control simulation using a sensorimotor enhanced musculoskeletal human model . Poster presentation at ISPGR World Congress 2023, Brisbane, AU.
Shanbhag, J., Wolf, A., Wechsler, I., Fleischmann, S., Winkler, J., Leyendecker, S.,... Miehling, J. (2023). Methods for integrating postural control into biomechanical human simulations: a systematic review . Journal of neuroEngineering and rehabilitation , 20 (1). https://doi.org/10.1186/s12984-023-01235-3
Stahlke, M., Feigl, T., Kram, S., Eskofier, B., & Mutschler, C. (2023). Uncertainty-based Fingerprinting Model Selection for Radio Localization . In Proc. 13th International Conference on Indoor Positioning and Indoor Navigation (IPIN 2023) (pp. 1-6). Nuremberg, Germany, DE.
Stahlke, M., Yammine, G., Feigl, T., Eskofier, B., & Mutschler, C. (2023). Indoor Localization with Robust Global Channel Charting: A Time-Distance-Based Approach . IEEE Transactions on Machine Learning in Communications and Networking , 1 (1), 1-15. https://doi.org/10.1109/TMLCN.2023.3256964
Ullrich, M., Roth, N., Küderle, A., Richer, R., Gladow, T., Gaßner, H.,... Kluge, F. (2023). Fall Risk Prediction in Parkinson's Disease Using Real-World Inertial Sensor Gait Data. IEEE Journal of Biomedical and Health Informatics , 27 (1), 319-328. https://doi.org/10.1109/JBHI.2022.3215921
Vorberg, L., Pflüger, S., Richer, R., Jäger, K., Küderle, A., Rohleder, N., & Eskofier, B. (2023). Prediction of Stress Coping Capabilities from Nightly Heart Rate Patterns using Machine Learning . In 2023 IEEE EMBS International Conference on Biomedical and Health Informatics (BHI) . Pittsburgh, US: IEEE.
Zugarini, A., Röthenbacher, T., Klede, K., Ernandes, M., Eskofier, B., & Zanca, D. (2023). Die Rätselrevolution: Automated German Crossword Solving . In Federico Boschetti, Gianluca E. Lebani, Bernardo Magnini, Nicole Novielli (Eds.), Proceedings of the 9th Italian Conference on Computational Linguistics . Venice, IT.
Zürl, M., Dirauf, R., Köferl, F., Steinlein, N., Sueskind, J., Zanca, D.,... Eskofier, B. (2023). PolarBearVidID: A Video-Based Re-Identification Benchmark Dataset for Polar Bears . Animals , 13 , 801. https://doi.org/10.3390/ani13050801
da Rosa Tavares, J.E., Ullrich, M., Roth, N., Kluge, F., Eskofier, B., Gaßner, H.,... Victória Barbosa, J.L. (2023). uTUG: An unsupervised Timed Up and Go test for Parkinson's disease . Biomedical Signal Processing and Control , 81 . https://doi.org/10.1016/j.bspc.2022.104394
2022
Albrecht, B.M., Flasskamp, F.T., Koster, A., Eskofier, B., & Bammann, K. (2022). Cross-sectional survey on researchers' experience in using accelerometers in health-related studies . BMJ Open Sport and Exercise Medicine , 8 (2). https://doi.org/10.1136/bmjsem-2021-001286
Antunes, R.S., Da Costa, C.A., Küderle, A., Abdullahi, I., & Eskofier, B. (2022). Federated Learning for Healthcare: Systematic Review and Architecture Proposal . ACM Transactions on Intelligent Systems and Technology . https://doi.org/10.1145/3501813
Cakici, A., Oßwald, M., Souza de Oliveira, D., Braun, D., Simpetru, R., Kinfe, T.M.,... Del Vecchio, A. (2022). A Generalized Framework for the Study of Spinal Motor Neurons Controlling the Human Hand During Dynamic Movements . In Proceedings of the 44th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2022 (pp. 4115-4118). Scottish Event Campus, Glasgow, GB: Institute of Electrical and Electronics Engineers Inc..
Cakici, A.L., Oßwald, M., Souza de Oliveira, D., Braun, D., Simpetru, R.C., Kinfe, T.M.,... Del Vecchio, A. (2022). A Generalized Framework for the Study of Spinal Motor Neurons Controlling the Human Hand During Dynamic Movements . In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS (pp. 4115-4118). Glasgow, GBR: Institute of Electrical and Electronics Engineers Inc..
Capito, K., Gmelch, L.M., Rupp, L., Sadeghi, M., Eskofier, B., & Berking, M. (2022). Efficacy of a smartphone-based reappraisal training against depressed mood and benefits of enhancing it with facial expression–a feasibility study . In Proceedings of the Deutscher Psychotherapiekongress . Berlin.
Ceron, J.D., Lopez, D.M., Eskofier, B., & Kluge, F. (2022). Framework for Simultaneous Indoor Localization, Mapping, and Human Activity Recognition in Ambient Assisted Living Scenarios . Sensors , 22 (9). https://doi.org/10.3390/s22093364
Dib, W., Ghanem, K., Ababou, A., & Eskofier, B. (2022). Human Activity Recognition based on the Fading characteristics of the On-body Channel . IEEE Sensors Journal . https://doi.org/10.1109/JSEN.2022.3159992
Facco Rodrigues, V., Righi, R.R., Andre da Costa, C., Stoffel Antunes, R., Bazo, R., Reis, E.S.,... Eskofier, B. (2022). HealthStack: Providing an IoT Middleware for Malleable QoS Service Stacking for Hospital 4.0 Operating Rooms . IEEE Internet of Things . https://doi.org/10.1109/JIOT.2022.3160633
Fidorra, J., Nissen, M., Abdullahi Yari, I., Ostgathe, C., Steigleder, T., & Eskofier, B. (2022). Concept of a Simple Reaction Test for eHealth-Based Opioid Response Assessment in Palliative Care . Poster presentation at 12th World Research Congress of the European Association for Palliative Care, Online.
Flaucher, M., Nissen, M., Jäger, K., Titzmann, A., Pontones, C., Hübner, H.,... Eskofier, B. (2022). Smartphone-Based Colorimetric Analysis of Urine Test Strips for At-Home Prenatal Care . IEEE Journal of Translational Engineering in Health and Medicine , 10 , 1-9. https://doi.org/10.1109/JTEHM.2022.3179147
Froehlich, H., Bontridder, N., Petrovska-Delacreta, D., Glaab, E., Kluge, F., El Yacoubi, M.,... Klucken, J. (2022). Leveraging the Potential of Digital Technology for Better Individualized Treatment of Parkinson's Disease . Frontiers in Neurology , 13 . https://doi.org/10.3389/fneur.2022.788427
Gmelch, L.M., Böhme, S., Capito, K., Rupp, L., Richer, R., Sadeghi, M.,... Berking, M. (2022). EmpkinS - Empathokinästhetische Sensorik für Biofeedback bei Depression . In Proceedings of the Deutscher Psychotherapiekongress (DPK) . Berlin.
Gmelch, L.M., Capito, K., Rupp, L., Richer, R., Sadeghi, M., Eskofier, B.,... Böhme, S. (2022). EmpkinS: empatho-kinesthetic sensory systems for biofeedback in depression . In Proceedings of the EmpkinS: empatho-kinesthetic sensory systems for biofeedback in depression . Freiburg.
Hagengruber, A., Leipscher, U., Eskofier, B., & Vogel, J. (2022). A New Labeling Approach for Proportional Electromyographic Control . Sensors , 22 (4). https://doi.org/10.3390/s22041368
Hecht, D., Pfahler, T., Ullmann, I., Altstidl, T.R., Amer, N., Jin, Y.,... Vossiek, M. (2022). In Vivo Skin-Type Classification Using Millimeter-Wave Near-Field Probe Spectroscopy . In Institute of Electrical and Electronics Engineers (IEEE) (Eds.), 2022 52nd European Microwave Conference . Milan, IT: Milan: Institute of Electrical and Electronics Engineers (IEEE).
Herzer, L., Mücke, A., Richer, R., Albrecht, N.C., Heyder, M., Jäger, K.,... Eskofier, B. (2022). Influence of Sensor Position and Body Movements on Radar-Based Heart Rate Monitoring . In IEEE (Eds.), Proceedings of the 2022 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI) . Ioannina, GR.
Ibrahim, A., Flachenecker, F., Gaßner, H., Rothammer, V., Klucken, J., Eskofier, B., & Kluge, F. (2022). Short inertial sensor-based gait tests reflect perceived state fatigue in multiple sclerosis . Multiple Sclerosis and Related Disorders , 58 . https://doi.org/10.1016/j.msard.2022.103519
Jäger, K., Nissen, M., Richer, R., Rahm, S., Titzmann, A., Fasching, P.,... Leutheuser, H. (2022). Machine Learning-based Detection of In-Utero Fetal Presentation from Non-Invasive Fetal ECG . In IEEE (Eds.), Proceedings of the 2022 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI) . Ioannina, GR.
Keinert, M., Streit, H., Böhme, S., Rupp, L., Schindler-Gmelch, L., Capito, K.,... Berking, M. (2022). Eine emotionsbasierte Variante des Annäherungs-Vermeidungs-Modifikationstrainings als Maßnahme zur Reduktion erhöhten Stresserlebens: eine Pilotstudie . Poster presentation at 1. Deutscher Psychotherapiekongress, Berlin.
Knitza, J., Janousek, L., Kluge, F., Von Der Decken, C.B., Kleinert, S., Vorbrueggen, W.,... Bartz-Bazzanella, P. (2022). Machine learning-based improvement of an online rheumatology referral and triage system . Frontiers in Medicine , 9 . https://doi.org/10.3389/fmed.2022.954056
Krauß, D., Richer, R., Küderle, A., Beilner, J., Rohleder, N., & Eskofier, B. (2022, October). Benchmarking of Sleep/Wake Detection Algorithms on a Large Cohort using Actigraphy, HRV, and Respiration Information . Poster presentation at IEEE-EMBS International Conference on Biomedical and Health Informatics, Ioaninna, GR.
Krauß, D., Richer, R., Küderle, A., Rohleder, N., & Eskofier, B. (2022, September). Towards Integration of Sleep Quality in Sports Monitoring – Improving Wearable Sleep Detection Algorithms through Respiratory Information . Paper presentation at 13th World Congress of Performance Analysis of Sport 2022 & 13th International Symposium on Computer Science in Sport 2022, Wien, AT.
Küderle, A., Roth, N., Richer, R., & Eskofier, B. (2022). imucal - A Python library to calibrate 6 DOF IMUs . Journal of Open Source Software , 7 , 4338. https://doi.org/10.21105/joss.04338
Küderle, A., Roth, N., Zlatanovic, J., Zrenner, M., Eskofier, B., & Kluge, F. (2022). The placement of foot-mounted IMU sensors does affect the accuracy of spatial parameters during regular walking . PLoS ONE , 17 (6). https://doi.org/10.1371/journal.pone.0269567
Link, J., Perst, T., Stöve, M., & Eskofier, B. (2022). Wearable Sensors for Activity Recognition in Ultimate Frisbee Using Convolutional Neural Networks and Transfer Learning . Sensors , 22 , 2560. https://doi.org/10.3390/s22072560
Link, J., Schwinn, L., Pulsmeyer, F., Kautz, T., & Eskofier, B. (2022). xLength: Predicting Expected Ski Jump Length Shortly after Take-Off Using Deep Learning . Sensors , 22 (21). https://doi.org/10.3390/s22218474
Lu, H., Yip, J., Steigleder, T., Grießhammer, S., Heckel, M., Jami, N.V.S.J.,... Kölpin, A. (2022). A Lightweight Robust Approach for Automatic Heart Murmurs and Clinical Outcomes Classification from Phonocardiogram Recordings . In 2022 Computing in Cardiology (CinC) . Tampere, FI: New York City: IEEE.
Löffler, C., Reeb, L., Dzibela, D., Marzilger, R., Witt, N., Eskofier, B., & Mutschler, C. (2022). Deep Siamese Metric Learning: A Highly Scalable Approach to Searching Unordered Sets of Trajectories . ACM Transactions on Intelligent Systems and Technology , 13 (1). https://doi.org/10.1145/3465057
Maier, J., Nitschke, M., Choi, J.H., Gold, G., Fahrig, R., Eskofier, B., & Maier, A. (2022). Rigid and Non-Rigid Motion Compensation in Weight-Bearing CBCT of the Knee Using Simulated Inertial Measurements . IEEE Transactions on Biomedical Engineering , 69 (5), 1608-1619. https://doi.org/10.1109/TBME.2021.3123673
Mehringer, W., Wirth, M., Roth, D., Michelson, G., & Eskofier, B. (2022). Stereopsis Only: Validation of a Monocular Depth Cues Reduced Gamified Virtual Reality with Reaction Time Measurement . IEEE Transactions on Visualization and Computer Graphics . https://doi.org/10.1109/TVCG.2022.3150486
Moradi, H., Roth, N., Seifer, A.-K., & Eskofier, B. (2022). Detection of distorted gait and wearing-off phenomenon in Parkinson's disease patients during Levodopa therapy . In 2022 IEEE-EMBS INTERNATIONAL CONFERENCE ON BIOMEDICAL AND HEALTH INFORMATICS (BHI) JOINTLY ORGANISED WITH THE IEEE-EMBS INTERNATIONAL CONFERENCE ON WEARABLE AND IMPLANTABLE BODY SENSOR NETWORKS (BSN'22) . Ioannina, GR: NEW YORK: IEEE.
Müller, V., Richer, R., Henrich, L., Berger, L., Gelardi, A., Jäger, K.,... Rohleder, N. (2022). The Stroop Competition: A Social-Evaluative Stroop Test for Acute Stress Induction . In 2022 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI) (Eds.), Proceedings of the IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI) . Ioannina, GR.
Müller, V., Richer, R., Jäger, K., Henrich, L., Berger, L., Gelardi, A.,... Rohleder, N. (2022, June). The Stroop Competition: A Social-Evaluative Stroop Test For Acute Stress Induction . Poster presentation at 79th Annual Scientific Meeting of the American Psychosomatic Society, Long Beach, CA, US.
Nissen, M., Slim, S., Jäger, K., Flaucher, M., Hübner, H., Danzberger, N.,... Eskofier, B. (2022). Heart Rate Measurement Accuracy of Fitbit Charge 4 and Samsung Galaxy Watch Active2: Device Evaluation Study . JMIR Formative Research , 6 , e33635. https://doi.org/10.2196/33635
Nitschke, M., Marzilger, R., Leyendecker, S., Eskofier, B., & Koelewijn, A. (2022). Optical motion capturing of change of direction motions reconstructed with inverse kinematics and dynamics and optimal control simulation . Zenodo.
Ollenschläger, M., Küderle, A., Mehringer, W., Seifer, A.-K., Winkler, J., Gaßner, H.,... Kluge, F. (2022). MaD GUI: An Open-Source Python Package for Annotation and Analysis of Time-Series Data . Sensors , 22 (15). https://doi.org/10.3390/s22155849
Ollenschläger, M., Müller-Schulz, M., Püllen, R., Möller, C., Klucken, J., Eskofier, B., & Kluge, F. (2022). Correction to: Wearable gait analysis systems: ready to be used by medical practitioners in geriatric wards? (European Geriatric Medicine, (2022), 10.1007/s41999-022-00629-1) . European Geriatric Medicine . https://doi.org/10.1007/s41999-022-00646-0
Ollenschläger, M., Müller-Schulz, M., Püllen, R., Möller, C., Klucken, J., Eskofier, B., & Kluge, F. (2022). Wearable gait analysis systems: ready to be used by medical practitioners in geriatric wards? European Geriatric Medicine . https://doi.org/10.1007/s41999-022-00629-1
Qiu, J., Oppelt, M., Nissen, M., Anneken, L., Breininger, K., & Eskofier, B. (2022). Improving Deep Learning-based Cardiac Abnormality Detection in 12-Lead ECG with Data Augmentation . In : 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) . Glasgow, Scotland, GB.
Regensburger, M., Spatz, I., Ollenschläger, M., Martindale, C., Lindeburg, P., Kohl, Z.,... Gaßner, H. (2022). Inertial Gait Sensors to Measure Mobility and Functioning in Hereditary Spastic Paraplegia A Cross-sectional Multicenter Clinical Study . Neurology , 99 (10), E1079-E1089. https://doi.org/10.1212/WNL.0000000000200819
Richer, R., Koch, V., Küderle, A., Müller, V., Wirth, V., Stamminger, M.,... Eskofier, B. (2022, July). Detection of Acute Psychosocial Stress from Body Movements using Machine Learning . Poster presentation at 79th Annual Scientific Meeting of the American Psychosomatic Society, Long Beach, CA, US.
Richer, R., Zenkner, J.J., Küderle, A., Rohleder, N., & Eskofier, B. (2022, July). Exploring the Cold Face Test as a Mechanism for Reducing Acute Psychosocial Stress Responses . Paper presentation at 79th Annual Scientific Meeting of the American Psychosomatic Society, Long Beach, CA, US.
Richer, R., Zenkner, J.J., Küderle, A., Rohleder, N., & Eskofier, B. (2022). Vagus activation by Cold Face Test reduces acute psychosocial stress responses . Scientific Reports , 12 . https://doi.org/10.1038/s41598-022-23222-9
Rodrigues, V.F., Antunes, R.S., Seewald, L.A., Bazo, R., dos Reis, E.S., dos Santos, U.J.,... Fahrig, R. (2022). A multi-sensor architecture combining human pose estimation and real-time location systems for workflow monitoring on hybrid operating suites . Future Generation Computer Systems-The International Journal of Grid Computing Theory Methods and Applications , 135 , 283-298. https://doi.org/10.1016/j.future.2022.05.006
Rohleder, N., Richer, R., Koch, V., Küderle, A., Müller, V., Wirth, V.,... Eskofier, B. (2022, July). Effect of Acute Psychosocial Stress on Body Movements . Paper presentation at 79th Annual Scientific Meeting of the American Psychosomatic Society, Long Beach, CA, US.
Roth, N., Ullrich, M., Küderle, A., Gladow, T., Marxreiter, F., Gaßner, H.,... Eskofier, B. (2022). Real-World Stair Ambulation Characteristics Differ Between Prospective Fallers and Non-Fallers in Parkinson’s Disease . IEEE Journal of Biomedical and Health Informatics , 1-9. https://doi.org/10.1109/JBHI.2022.3186766
Rupp, L., Keinert, M., Böhme, S., Gmelch, L.M., Streit, H., Schuller, B.W.,... Berking, M. (2022). Let It Go – A Randomized Controlled Pilot Study Exploring the Utility of Sadness in an Emotion-Based Approach-Avoidance Modification Training in the Context of Stress . Poster presentation at Deutscher Psychotherapie Kongress, Berlin.
Schmidt, L.M., Brosig, J., Plinge, A., Eskofier, B., & Mutschler, C. (2022). An Introduction to Multi-Agent Reinforcement Learning and Review of its Application to Autonomous Mobility . In IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC (pp. 1342-1349). Macau, CHN: Institute of Electrical and Electronics Engineers Inc..
Schmidt, L.M., Rietsch, S., Plinge, A., Eskofier, B., & Mutschler, C. (2022). How to Learn from Risk: Explicit Risk-Utility Reinforcement Learning for Efficient and Safe Driving Strategies . In IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC (pp. 1913-1920). Macau, CHN: Institute of Electrical and Electronics Engineers Inc..
Schwinn, L., Bungert, L., Nguyen, A., Raab, R., Pulsmeyer, F., Precup, D.,... Zanca, D. (2022). Improving Robustness against Real-World and Worst-Case Distribution Shifts through Decision Region Quantification . In PMLR (Eds.), 162 (pp. 19434--19449). Baltimore, USA.
Scott, K., Bonci, T., Salis, F., Alcock, L., Buckley, E., Gazit, E.,... Mazza, C. (2022). Design and validation of a multi-task, multi-context protocol for real-world gait simulation . Journal of neuroEngineering and rehabilitation , 19 (1). https://doi.org/10.1186/s12984-022-01116-1
Souza de Oliveira, D., Casolo, A., Balshaw, T.G., Maeo, S., Lanza, M.B., Martin, N.R.W.,... Del Vecchio, A. (2022). Neural decoding from surface high-density EMG signals: influence of anatomy and synchronization on the number of identified motor units . Journal of Neural Engineering , 19 (4). https://doi.org/10.1088/1741-2552/ac823d
Stern, A.D., Brönneke, J., Debatin, J.F., Hagen, J., Matthies, H., Patel, S.,... Goldsack, J.C. (2022). Advancing digital health applications: priorities for innovation in real-world evidence generation . The Lancet Digital Health , 4 (3), e200-e206. https://doi.org/10.1016/S2589-7500(21)00292-2
Stöve, M., Wirth, M., Farlock, R., Antunovic, A., Müller, V., & Eskofier, B. (2022). Eye Tracking-Based Stress Classification of Athletes in Virtual Reality . Proceedings of the ACM on Computer Graphics and Interactive Techniques , 5 , 1-17. https://doi.org/10.1145/3530796
Truong, M.T., Nwosu, O.B., Gaytan Torres, M.E., Segura Vargas, M.P., Seifer, A.-K., Nitschke, M.,... Morf, H. (2022). A Yoga Exercise App Designed for Patients With Axial Spondylarthritis: Development and User Experience Study . JMIR Formative Research , 6 (6), e34566. https://doi.org/10.2196/34566
Ullrich, M., Roth, N., Küderle, A., Richer, R., Gladow, T., Gaßner, H.,... Kluge, F. (2022). Fall Risk Prediction in Parkinson’s Disease Using Real-World Inertial Sensor Gait Data . IEEE Transactions on Neural Systems and Rehabilitation Engineering . https://doi.org/10.1109/jbhi.2022.3215921
Vorberg, L., Pflüger, S., Richer, R., Jäger, K., Küderle, A., Nassall, K.,... Rohleder, N. (2022, June). Prediction of Stress Coping Capabilities from Nightly Heart Rate Patterns Using Machine Learning . Poster presentation at 79th Annual Scientific Meeting of the American Psychosomatic Society, Long Beach, CA, US.
Weber, N., Lennartz, R., Knitza, J., Bayat, S., Sadeghi, M., Ibrahim, A.,... Kleyer, A. (2022). AB1528-HPR FULL BODY HAPTIC BODYSUIT - AN INSTRUMENT TO MEASURE THE RANGE AND SPEED OF MOTION IN PATIENTS WITH AXIAL SPONDYLOARTHRITIS (axSpA) - PRELIMINARY RESULTS . Annals of the Rheumatic Diseases , 81 , 1866.2-1867. https://doi.org/10.1136/annrheumdis-2022-eular.3069
Wehbi, M., Luge, D., Hamann, T., Barth, J., Kaempf, P., Zanca, D., & Eskofier, B. (2022). Surface-Free Multi-Stroke Trajectory Reconstruction and Word Recognition Using an IMU-Enhanced Digital Pen . Sensors , 22 , 5347. https://doi.org/10.3390/s22145347
Wirth, M., Mehringer, W., Gradl, S., & Eskofier, B. (2022). Extended Realities (XRs): How Immersive Technologies Influence Assessment and Training for Extreme Environments . In Tobias Cibis, Dr. Carolyn McGregor AM (Eds.), Engineering and Medicine in Extreme Environments. (pp. 309-335). Cham: Springer.
Yip, J., Steigleder, T., Heckel, M., Eskofier, B., & Ostgathe, C. (2022, August). Die Beschreibung des Gesundheitszustandes anhand von Veränderungen in Bewegungsmustern von Palliativpatient:innen – Eine explorative Erfassung . Paper presentation at Kongress der Deutschen Gesellschaft für Palliativmedizin, Bremen.
Zrenner, M., Stöve, M., Franklin, S., Kumar, B., Jensen, U., & Eskofier, B. (2022). Data-Driven Optimization of Sensor Placement for Pressure Insoles Using Particle Swarm Optimization . In Proceedings of the 9th International Performance Analysis Workshop and Conference & 5th IACSS Conference. (pp. 160-164). Springer, Cham.
Zürl, M., Stoll, P., Brehm, I., Raab, R., Zanca, D., Kabri, S.,... Eskofier, B. (2022). Automated Video-Based Analysis Framework for Behavior Monitoring of Individual Animals in Zoos Using Deep Learning—A Study on Polar Bears . Animals , 12 , 692. https://doi.org/10.3390/ani12060692
2021
Abdullahi, I., Dehling, T., Kluge, F., Eskofier, B., & Sunyaev, A. (2021). Online at Will: A Novel Protocol for Mutual Authentication in Peer-to-Peer Networks for Patient-Centered Health Care Information Systems . In 54th Hawaii International Conference on Systems Sciences (HICSS-54) . Kauai, Hawaii, USA, US: ScholarSpace.
Abdullahi, I., Dehling, T., Kluge, F., Geck, J., Sunyaev, A., & Eskofier, B. (2021). Security Engineering of Patient-Centered Health Care Information Systems in Peer-to-Peer Environments: Systematic Review . Journal of Medical Internet Research , 23 (J Med Internet Res 2021), e24460. https://doi.org/10.2196/24460
Dib, W., Ghanem, K., Nedil, M., Ababou, A., & Eskofier, B. (2021). Identification of individuals through a new Gait Recognition Method . In 2021 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, APS/URSI 2021 - Proceedings (pp. 1813-1814). Singapore, SG: Institute of Electrical and Electronics Engineers Inc..
Dorschky, E., Nitschke, M., van den Bogert, A.J., Koelewijn, A., & Eskofier, B. (2021). Machine Learning from Biomechanical SimulaIons for an "in the Wild" Movement Analysis . Paper presentation at 6th International Congress on Complex Systems in Sports (ICCSS), Mainz, Germany.
Dos Reis, E.S., Seewald, L.A., Antunes, R.S., Rodrigues, V.F., Righi, R.D.R., Da Costa, C.A.,... Fahrig, R. (2021). Monocular multi-person pose estimation: A survey . Pattern Recognition , 118 . https://doi.org/10.1016/j.patcog.2021.108046
Dumbach, P., Liu, R., Jalowski, M., & Eskofier, B. (2021). The Adoption Of Artificial Intelligence In SMEs - A Cross-National Comparison In German And Chinese Healthcare . In Forbig P., Hinkelmann K., Kirikova M., Lantow B., Møller C., Morichetta A., Plebani P., Re B., Sandkuhl K., Seigerroth U. (Eds.), Joint Proceedings of the BIR 2021 Workshops and Doctoral Consortium co-located with 20th International Conference on Perspectives in Business Informatics Research (BIR 2021) (pp. 84 - 98). Vienna, Austria (fully-virtual conference), AT: CEUR Workshop Proceedings.
Dörflinger, L., Nissen, M., Jäger, K., Wirth, M., Titzmann, A., Pontones, C.,... Eskofier, B. (2021). Digital Maternity Records: Motivation, Acceptance, Requirements, Usability and Prototype Evaluation of an Interface for Physicians and Midwives . In Mensch und Computer 2021 . Ingolstadt, DE.
Hagengruber, A., Leipscher, U., Eskofier, B., & Vogel, J. (2021). Electromyography for Teleoperated Tasks in Weightlessness . IEEE Transactions on Human-Machine Systems . https://doi.org/10.1109/THMS.2020.3047975
Happold, J., Richer, R., Küderle, A., Gaßner, H., Klucken, J., Eskofier, B., & Kluge, F. (2021). Evaluation of Orthostatic Reactions in Real-World Environments Using Wearable Sensors . In IEEE (Eds.), Proceedings of the 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) .
Jakob, V., Küderle, A., Klucken, J., Eskofier, B., Winkler, J., Winterholler, M.,... Kluge, F. (2021). Validation of a sensor-based gait analysis system with a gold-standard motion capture system in patients with parkinson’s disease . Sensors , 21 (22). https://doi.org/10.3390/s21227680
Kamal Mallick, M., Biser, S., Haridas, A., Umesh, V., Toensing, O., Abdullahi, I.,... Steigleder, T. (2021). Improving Dyspnoea Symptom Control of Patients in Palliative Care Using a Smart Patch-A Proof of Concept Study . Frontiers in Digital Health , 3 (765867). https://doi.org/10.3389/fdgth.2021.765867
Kluge, F., Del Din, S., Cereatti, A., Gaßner, H., Hansen, C., Helbostad, J.L.,... Mazza, C. (2021). Consensus based framework for digital mobility monitoring . PLoS ONE , 16 (8). https://doi.org/10.1371/journal.pone.0256541
Laut, P., Dumbach, P., & Eskofier, B. (2021). Integration of Artificial Intelligence in the Organizational Adoption – A Configurational Perspective . In Association for Information Systems (Eds.), ICIS 2021 Proceedings (pp. 2). Austin, US: AIS eLibrary.
Link, J., Guillaume, S., & Eskofier, B. (2021). Experimental validation of real-time ski jumping tracking system based on wearable sensors . Sensors , 21 (23). https://doi.org/10.3390/s21237780
Lukas, C., Eskofier, B., & Berking, M. (2021). A gamified smartphone-based intervention for depression: Randomized Controlled Pilot Trial. JMIR Mental Health , 8 (7). https://doi.org/10.2196/16643
Maier, J., Maier, A., Eskofier, B., Fahrig, R., & Choi, J.-H. (2021). 3D Non-Rigid Alignment of Low-Dose Scans Allows to Correct for Saturation in Lower Extremity Cone-Beam CT . IEEE Access , 9 , 71821-71831. https://doi.org/10.1109/ACCESS.2021.3079368
Maier, J., Nitschke, M., Choi, J.H., Gold, G., Fahrig, R., Eskofier, B., & Maier, A. (2021). Inertial Measurements for Motion Compensation in Weight-bearing Cone-beam CT of the Knee . In Christoph Palm, Heinz Handels, Klaus Maier-Hein, Thomas M. Deserno, Andreas Maier, Thomas Tolxdorff (Eds.), Informatik aktuell (pp. 336-). Regensburg, DE: Springer Science and Business Media Deutschland GmbH.
Martindale, C., Christlein, V., Klumpp, P., & Eskofier, B. (2021). Wearables-based multi-task gait and activity segmentation using recurrent neural networks . Neurocomputing , 432 , 250-261. https://doi.org/10.1016/j.neucom.2020.08.079
Mazza, C., Alcock, L., Aminian, K., Becker, C., Bertuletti, S., Bonci, T.,... Rochester, L. (2021). Technical validation of real-world monitoring of gait: a multicentric observational study . BMJ Open , 11 (12). https://doi.org/10.1136/bmjopen-2021-050785
Mehringer, W., Wirth, M., Risch, F., Roth, D., Michelson, G., Michelson, G., & Eskofier, B. (2021). Hess Screen Revised: How Eye Tracking and Virtual Reality change Strabismus Assessment . In IEEE (Eds.), 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) (pp. 2058 - 2062).
Nann, M., Haslacher, D., Colucci, A., Eskofier, B., Von Tscharner, V., & Soekadar, S.R. (2021). Heart rate variability predicts decline in sensorimotor rhythm control . Journal of Neural Engineering , 18 (4). https://doi.org/10.1088/1741-2552/ac1177
Nguyen, A., Foerstel, S., Kittler, T., Kurzyukov, A., Schwinn, L., Zanca, D.,... Eskofier, B. (2021). System Design for a Data-Driven and Explainable Customer Sentiment Monitor Using IoT and Enterprise Data . IEEE Access . https://doi.org/10.1109/ACCESS.2021.3106791
Nitschke, M., Dorschky, E., Eskofier, B., Koelewijn, A., & van den Bogert, A.J. (2021, July). Trajectory Optimization of a 3D Musculoskeletal Model with Inertial Sensors . Paper presentation at XXVIII Congress of the International Society of Biomechanics (ISB), Online.
Pasluosta, C.F., Popovic, M.R., Eskofier, B., & Stieglitz, T. (2021). Editorial: Wearable and Implantable Technologies in the Rehabilitation of Patients With Sensory Impairments . Frontiers in Neuroscience , 15 . https://doi.org/10.3389/fnins.2021.740263
Richer, R., Küderle, A., Dörr, J., Rohleder, N., & Eskofier, B. (2021). Assessing the Influence of the Inner Clock on the Cortisol Awakening Response and Pre-Awakening Movement . In IEEE (Eds.), 2021 IEEE EMBS International Conference on Biomedical and Health Informatics (BHI) (pp. 1-4). Athens, GR.
Richer, R., Küderle, A., Ullrich, M., Rohleder, N., & Eskofier, B. (2021). BioPsyKit: A Python package for the analysis of biopsychological data . Journal of Open Source Software , 6 , 3702. https://doi.org/10.21105/joss.03702
Roth, N., Küderle, A., Prossel, D., Gaßner, H., Eskofier, B., & Kluge, F. (2021). An inertial sensor-based gait analysis pipeline for the assessment of real-world stair ambulation parameters . Sensors , 21 (19). https://doi.org/10.3390/s21196559
Roth, N., Küderle, A., Ullrich, M., Gladow, T., Marxreiter, F., Klucken, J.,... Kluge, F. (2021). Hidden Markov Model based stride segmentation on unsupervised free-living gait data in Parkinson’s disease patients . Journal of neuroEngineering and rehabilitation , 18 (1). https://doi.org/10.1186/s12984-021-00883-7
Roth, N., Wieland, G.P., Küderle, A., Ullrich, M., Gladow, T., Marxreiter, F.,... Kluge, F. (2021). Do We Walk Differently at Home? A Context-Aware Gait Analysis System in Continuous Real-World Environments . In Proceedings of the 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) .
Schleicher, R., Nitschke, M., Martschinke, J., Stamminger, M., Eskofier, B., Klucken, J., & Koelewijn, A. (2021). BASH: Biomechanical Animated Skinned Human for Visualization of Kinematics and Muscle Activity . In Proceedings of the 16th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 1: GRAPP (pp. 25-36). Online.
Scholl, C., Tobola, A., Ludwig, K., Zanca, D., & Eskofier, B. (2021). A smart capacitive sensor skin with embedded data quality indication for enhanced safety in human–robot interaction . Sensors , 21 (21). https://doi.org/10.3390/s21217210
Schwinn, L., Nguyen, A., Raab, R., Bungert, L., Tenbrinck, D., Zanca, D.,... Eskofier, B. (2021). Identifying untrustworthy predictions in neural networks by geometric gradient analysis . In Proceedings of the Conference on Uncertainty in Artificial Intelligence (UAI) . Online.
Schwinn, L., Nguyen, A., Raab, R., Zanca, D., Eskofier, B., Tenbrinck, D., & Burger, M. (2021). Dynamically Sampled Nonlocal Gradients for Stronger Adversarial Attacks . In Proceedings of the International Joint Conference on Neural Networks (IJCNN) . Online.
Schwinn, L., Raab, R., Nguyen, A., Zanca, D., & Eskofier, B. (2021). Exploring Misclassifications of Robust Neural Networks to Enhance Adversarial Attacks .
Stöve, M., Schuldhaus, D., Gamp, A., Zwick, C., & Eskofier, B. (2021). From the Laboratory to the Field: IMU-Based Shot and Pass Detection in Football Training and Game Scenarios Using Deep Learning . Sensors , 21 , 3071. https://doi.org/10.3390/s21093071
Timotius, I., Bieler, L., Couillard-Despres, S., Sandner, B., Garcia-Ovejero, D., Labombarda, F.,... Puttagunta, R. (2021). Combination of defined catwalk gait parameters for predictive locomotion recovery in experimental spinal cord injury rat models . eNeuro , 8 (2), 1-14. https://doi.org/10.1523/ENEURO.0497-20.2021
Ullrich, M., Küderle, A., Reggi, L., Cereatti, A., Eskofier, B., & Kluge, F. (2021). Machine learning-based distinction of left and right foot contacts in lower back inertial sensor gait data . In Proceedings of the 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) . IEEE.
Ullrich, M., Mücke, A., Küderle, A., Roth, N., Gladow, T., Gaßner, H.,... Kluge, F. (2021). Detection of unsupervised standardized gait tests from real-world inertial sensor data in Parkinson’s disease . IEEE Transactions on Neural Systems and Rehabilitation Engineering , 29 , 2103-2111. https://doi.org/10.1109/TNSRE.2021.3119390
Wehbi, M., Hamann, T., Barth, J., Kaempf, P., Zanca, D., & Eskofier, B. (2021). Towards an IMU-based Pen Online Handwriting Recognizer . In Proceedings of the International Conference on Document Analysis and Recognition ICDAR 2021 (pp. 289-303). Lausanne, CH: Springer Link.
Wirth, M., Gradl, S., Prosinger, G., Kluge, F., Roth, D., & Eskofier, B. (2021). The impact of avatar appearance, perspective and context on gait variability and user experience in virtual reality . In Proceedings - 2021 IEEE Conference on Virtual Reality and 3D User Interfaces, VR 2021 (pp. 326-335). Virtual, Lisboa, PRT: Institute of Electrical and Electronics Engineers Inc..
Wirth, M., Kohl, S., Gradl, S., Farlock, R., Roth, D., & Eskofier, B. (2021). Assessing visual exploratory activity of athletes in virtual reality using head motion characteristics . Sensors , 21 (11). https://doi.org/10.3390/s21113728
Zrenner, M., Heyde, C., Duemler, B., Dykman, S., Roecker, K., & Eskofier, B. (2021). Retrospective Analysis of Training and Its Response in Marathon Finishers Based on Fitness App Data . Frontiers in Physiology , 12 . https://doi.org/10.3389/fphys.2021.669884
da Silva, D.B., Schmidt, D., da Costa, C.A., da Rosa Righi, R., & Eskofier, B. (2021). DeepSigns: A predictive model based on Deep Learning for the early detection of patient health deterioration . Expert Systems With Applications , 165 . https://doi.org/10.1016/j.eswa.2020.113905
2020
Auferoth, F., Eskofier, B., Gerber, L., Grimm, V., Richer, R., & Rohleder, N. (2020). Tracking and Teamwork Performance .
Bazo, R., Reis, E., Adams Seewald, L., Facco Rodrigues, V., Andre da Costa, C., Gonzaga, L.,... Horz, T. (2020). Baptizo: a sensor fusion based model for tracking the identity of human poses . Information Fusion . https://doi.org/10.1016/j.inffus.2020.03.011
Ceron, J.D., Kluge, F., Küderle, A., Eskofier, B., & López, D.M. (2020). Simultaneous indoor pedestrian localization and house mapping based on inertial measurement unit and bluetooth low-energy beacon data . Sensors , 20 (17), 1-21. https://doi.org/10.3390/s20174742
Ceron, J.D., Martindale, C., López, D.M., Kluge, F., & Eskofier, B. (2020). Indoor Trajectory Reconstruction of Walking, Jogging, and Running Activities Based on a Foot-Mounted Inertial Pedestrian Dead-Reckoning System . Sensors , 20 (3), 651. https://doi.org/10.3390/s20030651
Dorschky, E., Nitschke, M., Martindale, C., van den Bogert, A.J., Koelewijn, A., & Eskofier, B. (2020). CNN-Based Estimation of Sagittal Plane Walking and Running Biomechanics From Measured and Simulated Inertial Sensor Data . Frontiers in Bioengineering and Biotechnology , 8 (604), 1-14. https://doi.org/10.3389/fbioe.2020.00604
Dumbach, P., Aly, A., Zrenner, M., & Eskofier, B. (2020). Exploration of Process Mining Opportunities In Educational Software Engineering - The GitLab Analyser . In Anna N. Rafferty, Jacob Whitehill, Cristobal Romero, Violetta Cavalli-Sforza (Eds.), Proceedings of the 13th International Conference on Educational Data Mining (pp. 601 - 604). Ifrane, Morocco (Fully Virtual Conference), MA.
Felix, F., Gaßner, H., Julius, H., De-Hyung, L., Peter, F., Winkler, J.,... Klucken, J. (2020). Objective sensor-based gait measures reflect motor impairment in multiple sclerosis patients: Reliability and clinical validation of a wearable sensor device . Multiple Sclerosis and Related Disorders , 39 . https://doi.org/10.1016/j.msard.2019.101903
Fischer, S., Ullrich, M., Küderle, A., Gaßner, H., Klucken, J., Eskofier, B., & Kluge, F. (2020). Automatic clinical gait test detection from inertial sensor data . In Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) (pp. 789 - 792). Montreal, CA.
Gaßner, H., Jensen, D., Marxreiter, F., Kletsch, A., Bohlen, S., Schubert, R.,... Kohl, Z. (2020). Correction to: Gait variability as digital biomarker of disease severity in Huntington’s disease (Journal of Neurology, (2020), 10.1007/s00415-020-09725-3) . Journal of Neurology . https://doi.org/10.1007/s00415-020-09789-1
Gaßner, H., Jensen, D., Marxreiter, F., Kletsch, A., Bohlen, S., Schubert, R.,... Kohl, Z. (2020). Gait variability as digital biomarker of disease severity in Huntington’s disease . Journal of Neurology , 267 (6), 1594-1601. https://doi.org/10.1007/s00415-020-09725-3
Gaßner, H., Sanders, P., Dietrich, A., Marxreiter, F., Eskofier, B., Winkler, J., & Klucken, J. (2020). Clinical Relevance of Standardized Mobile Gait Tests. Reliability Analysis Between Gait Recordings at Hospital and Home in Parkinson's Disease: A Pilot Study . Journal of Parkinson's Disease , 10 (4), 1763-1773. https://doi.org/10.3233/JPD-202129
Ibrahim, A., Küderle, A., Gaßner, H., Klucken, J., Eskofier, B., & Kluge, F. (2020). Inertial sensor-based gait parameters reflect patient-reported fatigue in multiple sclerosis . Journal of neuroEngineering and rehabilitation , 17 (1). https://doi.org/10.1186/s12984-020-00798-9
Ivanović, M.D., Hannink, J., Ring, M., Baronio, F., Vukčević, V., Hadžievski, L., & Eskofier, B. (2020). Predicting defibrillation success in out-of-hospital cardiac arrested patients: Moving beyond feature design . Artificial Intelligence in Medicine , 110 . https://doi.org/10.1016/j.artmed.2020.101963
Kaieski, N., da Costa, C.A., da Rosa Righi, R., Lora, P.S., & Eskofier, B. (2020). Application of artificial intelligence methods in vital signs analysis of hospitalized patients: A systematic literature review . Applied Soft Computing , 96 . https://doi.org/10.1016/j.asoc.2020.106612
Koch, R., Pfeiffer, N., Lang, N., Struck, M., Amft, O., Eskofier, B., & Wittenberg, T. (2020). Evaluation of HRV estimation algorithms from PPG data using neural networks . Current Directions in Biomedical Engineering , 6 (3). https://doi.org/10.1515/cdbme-2020-3130
Köferl, F., Link, J., & Eskofier, B. (2020). Application of SORT on Multi-Object Tracking and Segmentation . In Proceedings of the Conference on Computer Vision and Pattern Recognition;
5th BMTT MOTChallenge Workshop: Multi-Object Tracking and Segmentation . Seattle, WA, USA (Virtual).
Maier, J., Nitschke, M., Choi, J.-H., Gold, G., Fahrig, R., Eskofier, B., & Maier, A. (2020). Inertial Measurements for Motion Compensation in Weight-Bearing Cone-Beam CT of the Knee . In Anne L. Martel, Purang Abolmaesumi, Danail Stoyanov, Diana Mateus, Maria A. Zuluaga, S. Kevin Zhou, Daniel Racoceanu, Leo Joskowicz (Eds.), Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. (pp. 14-23).
Marxreiter, F., Buttler, U., Gaßner, H., Gandor, F., Gladow, T., Eskofier, B.,... Klucken, J. (2020). The Use of Digital Technology and Media in German Parkinson's Disease Patients . Journal of Parkinson's Disease , 10 (2), 717-727. https://doi.org/10.3233/JPD-191698
Mehringer, W., Wirth, M., Gradl, S., Durner, L., Ring, M., Laudanski, A.F.,... Michelson, G. (2020). An Image-Based Method for Measuring Strabismus in Virtual Reality . In IEEE (Eds.), 2020 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct) (pp. 5-12). Recife, BR.
Nguyen, A., Chatterjee, S., Weinzierl, S., Schwinn, L., Matzner, M., & Eskofier, B. (2020). Time matters: Time-aware LSTMs for predictive business process monitoring . In Proceedings of the ICPM 2020 International Workshops (pp. 1-12). Padua, IT.
Nitschke, M., Dorschky, E., Heinrich, D., Schlarb, H., Eskofier, B., Koelewijn, A., & van den Bogert, A.J. (2020). Efficient trajectory optimization for curved running using a 3D musculoskeletal model with implicit dynamics . Scientific Reports . https://doi.org/10.1038/s41598-020-73856-w
Orozco-Arroyave, J.R., Vasquez Correa, J., Klumpp, P., Perez Toro, P.A., Escobar-Grisales, D., Roth, N.,... Nöth, E. (2020). Apkinson: the smartphone application for telemonitoring Parkinson's patients through speech, gait and hands movement . Neurodegenerative Disease Management . https://doi.org/10.2217/nmt-2019-0037
Ott, F., Wehbi, M., Hamann, T., Barth, J., Eskofier, B., & Mutschler, C. (2020). The OnHW Dataset: Online Handwriting Recognition from IMU-Enhanced Ballpoint Pens with Machine Learning . Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies , 4 , 1-20. https://doi.org/10.1145/3411842
Raccagni, C., Sidoroff, V., Goebel, G., Granata, R., Leys, F., Klucken, J.,... Fanciulli, A. (2020). The footprint of orthostatic hypotension in parkinsonian syndromes . Parkinsonism & Related Disorders . https://doi.org/10.1016/j.parkreldis.2020.06.029
Richer, R., Zhao, N., Eskofier, B., & Paradiso, J.A. (2020). Exploring Smart Agents for the Interaction with Multimodal Mediated Environments . Multimodal Technologies and Interaction , 4 (2). https://doi.org/10.3390/mti4020027
Rico-Olarte, C., López, D.M., Becker, L., & Eskofier, B. (2020). Towards Classifying Cognitive Performance by Sensing Electrodermal Activity in Children With Specific Learning Disorders . IEEE Access , 8 , 196187-196196. https://doi.org/10.1109/ACCESS.2020.3033769
Rüthlein, M., Köferl, F., Mehringer, W., & Eskofier, B. (2020). Interactive Segmentation of RGB-D Indoor Scenes using Deep Learning . In Proceedings of the International Conference on Machine Learning;
2nd ICML 2020 Workshop on Human in the Loop Learning . Virtual Conference.
Sidoroff, V., Raccagni, C., Kaindlstorfer, C., Eschlboeck, S., Fanciulli, A., Granata, R.,... Gaßner, H. (2020). Characterization of gait variability in multiple system atrophy and Parkinson's disease . Journal of Neurology . https://doi.org/10.1007/s00415-020-10355-y
Sternemann, U., Suchantke, I., Schmidt, K.-G., Höfner, P., Wagner, D., Ollenschläger, M.,... Steigleder, T. (2020, August). Entwicklung einer Applikation zum Home-Monitoring des Gesundheitszustandes von Palliativpatienten - eine Proof-of-Concept-Studie . Poster presentation at 13. DGP Kongress Deutsche Gesellschaft für Palliativmedizin, Wiesbaden, DE.
Tietsch, M., Muaremi, A., Clay, I., Kluge, F., Hoefling, H., Ullrich, M.,... Müller, A. (2020). Robust Step Detection from Different Waist-Worn Sensor Positions: Implications for Clinical Studies . Digital Biomarkers , 4 (1), 50-58. https://doi.org/10.1159/000511611
Ullrich, M., Küderle, A., Hannink, J., Del Din, S., Gaßner, H., Marxreiter, F.,... Kluge, F. (2020). Detection of Gait From Continuous Inertial Sensor Data Using Harmonic Frequencies . IEEE Journal of Biomedical and Health Informatics , 24 (7), 1869 - 1878. https://doi.org/10.1109/JBHI.2020.2975361
Wanner, P., Hamacher, D., Schmautz, T., Eskofier, B., Pfeifer, K., & Steib, S. (2020). Dynamische Laufstabilität des Fußes bei Sportlern mit und ohne chronischer Sprunggelenksinstabilität nach Sprunggelenksdistorsion unter Berücksichtigung des Lauftempos und neuromuskulärer Ermüdung . In Tagungsband 3. Gamma-Kongress (S. 77-78). München, DE.
Wehbi, M., Hamann, T., Barth, J., & Eskofier, B. (2020). Digitizing Handwriting with a Sensor Pen: A Writer-Independent Recognizer . In IEEE (Eds.), Proceedings of the 17th International Conference on Frontiers in Handwriting Recognition (ICFHR) . Dortmund, DE.
Wirth, M., Gradl, S., Mehringer, W., Kulpa, R., Rupprecht, H., Poimann, D.,... Eskofier, B. (2020). Assessing Personality Traits of Team Athletes in Virtual Reality . In Proceedings - 2020 IEEE Conference on Virtual Reality and 3D User Interfaces, VRW 2020 (pp. 101-108). Atlanta, GA, US: Institute of Electrical and Electronics Engineers Inc..
Zrenner, M., Küderle, A., Roth, N., Jensen, U., Dümler, B., & Eskofier, B. (2020). Does the Position of Foot-Mounted IMU Sensors Influence the Accuracy of Spatio-Temporal Parameters in Endurance Running? Sensors , 20 (19). https://doi.org/10.3390/s20195705
Related Research Fields
Contact:
We conduct theoretical and applied research for wearable computing systems and machine learning algorithms for engineering applications at the intersection of sports and health care. Our motivation is generating a positive impact on human wellbeing, be it through increasing performance, maintaining health, improving rehabilitation, or monitoring disease.
Research projects
Center for AI in Medicine
(Own Funds)
Federated virtual twins for privacy-preserving personalised outcome prediction of type 2 diabetes treatment
(Third Party Funds Single)
Funding source: EU - 9. Rahmenprogramm - Horizon Europe
URL: https://daibetes.eu/
Virtual twins have the potential to be used as prognostic tools in precision medicine to support individualized disease management. However, training these models requires large volumes of data from various sources, which is challenging due to privacy regulations like the General Data Protection Regulation (GDPR). Recently, privacy-preserving computational methods, such as federated learning, have emerged, offering a way to utilize extensive data effectively while protecting sensitive patient information.
In dAIbetes, our main medical objective is to provide personalized predictions of treatment outcomes for type 2 diabetes, a condition affecting 1 in 10 adults globally and leading to annual costs of approximately 893 billion EUR. Although healthcare professionals are improving at addressing diabetes risk factors like diet and exercise, there are currently no guidelines for predicting treatment outcomes tailored to individual patients.
dAIbetes brings together advaned expertise in federated learning, artificial intelligence, cybersecurity, diabetes data standardization, clinical validation, as well as in legal and ethical evaluation of applying advanced federated machine learning to personalized medicine. 13 Partners from 13 European countries and the US will jointly implement the project which is structured into 9 Work Packages (WP1-WP9). At FAU, we are working on WP3, i.e., the development of virtual twin apps for training of virtual twin models that will use data from type 2 diabetes patients.
Automatisierte Kuratierung von in-vivo erfassten Zeitreihen
(Third Party Funds Single)
Funding source: Bayerisches Staatsministerium für Wirtschaft, Landesentwicklung und Energie (StMWi) (seit 2018)
Smart Wound Dressing incorporating Dye-based Sensors Monitoring of O2, pH and CO2 under the wound dressing and smart algorithms to assess the wound healing process
(Third Party Funds Single)
Funding source: Bayerische Forschungsstiftung
In Germany alone, the number of patients with chronic wound healing disorders is estimated at around 2.7 million. According to projections, the treatment of chronic wounds accounts for € 23 - 36 billion per year. Of the treatment costs for chronic wounds, 4.6 to 7.2 billion € alone are accounted for by the associated cost-intensive dressing materials. The aim of the SWODDYS project is to research the fundamentals for a new type of intelligent wound dressing for the treatment of acute and chronic wounds, which can monitor the energy-metabolic tissue and wound healing status individually for each patient and online by integrating fluorescent dye-based oxygen, pH and CO2 sensors.
Privacy-preserving analysis of distributed medical data
(Own Funds)
Recent legislative development, such as the European Health Data Space, expand access to anonymizied health data for various entities. While these advances offer opportunities for medical research and innovation, they also increase the risk of compromising individuals' privacy.
This project addresses the critical tension between the growing utility of health data and the need to protect individual privacy through organizational, infrastructural, and technical approaches. A key component of the technical solutions is privacy-enhancing technologies (PETs), such as secure multi-party computation and (local) differential privacy, which safeguard individuals' privacy while enabling the statistical analysis of aggregate data.
Testing and Experimentation Facility for Health AI and Robotics
(Third Party Funds Group – Sub project)
Term: 1. January 2023 - 31. December 2027
Funding source: Europäische Union (EU)
URL: https://www.tefhealth.eu/
Digital health application for the therapy of incontinence patients
(Third Party Funds Single)
Funding source: Bundesministerium für Wirtschaft und Klimaschutz (BMWK)
The goal of this project is the development of an application for supporting the physical rehabilitation therapy of prostatectomy and incontinence patients in planning and execution. An AI-driven algorithm for automatic planning will be developed and extended by a machine learning approach for live exercise execution feedback. The developed application will be clinically evaluated regarding effectiveness and therapy benefit.
Applied Data Science in Digital Psychology
(Third Party Funds Single)
Funding source: Bayerisches Staatsministerium für Wissenschaft und Kunst (StMWK) (seit 2018)
University education in psychology, medical technology and computer science currently focuses on teaching basic methods and knowledge with little involvement of other disciplines. Increasing digitalization and the ever more rapid spread of digital technologies, such as wearable sensors, smartphone apps, and artificial intelligence, also in the health sector, offer a wide range of opportunities to address psychological issues from new and interdisciplinary perspectives. However, this requires close cooperation between the disciplines of psychology and technical disciplines such as medical technology and computer science to enable the necessary knowledge transfer. Especially in these disciplines, there is a considerable need for innovative and interdisciplinary teaching concepts and research projects that teach the adequate use of digital technologies and explore the application of these technologies to relevant issues in order to enable better care in the treatment of people with mental disorders.
Multimodal Machine Learning for Decision Support Systems
(Third Party Funds Single)
Funding source: Siemens AG
The project aims to identify areas where advanced data analysis and processing methods can be applied to aspects of computer tomography (CT) technology. Furthermore included is the implementation and validation of said methods.
In this project, we analyze machine and customer data sent by thousands of high-end medical devices every day.
Since potentially relevant Information is often presented in different modalities, the optimal application of fusion techniques is a key factor when extracting insights.
Machine Learning for CT-Detector Production
(Third Party Funds Single)
Funding source: Industrie
The main goal of this project is to improve the detector manufacturing for computer tomography (CT). Therefore, data is gathered during the production of a CT-detector. This data is analysed and used to develop and train a machine learning system which should find the best composition of a CT-detector. In the future, the system will be integrated into the process of CT-detector manufacturing which, in result, should further improve the image quality and the production process of CT-devices. Especially, the warehouse utilization and the first-pass-yield should be enhaced. The project is realized in cooperation with Siemens Healthineers Frochheim.
Trusted Ecosystem of Applied Medical Data eXchange; Teilvorhaben: FAU@TEAM-X
(Third Party Funds Group – Sub project)
Term: 1. January 2022 - 31. March 2025
Funding source: Bundesministerium für Wirtschaft und Technologie (BMWi)
dhip campus-bavarian aim
(Third Party Funds Group – Overall project)
Funding source: Industrie
Empatho-Kinaesthetic Sensor Technology
(Third Party Funds Group – Overall project)
Funding source: DFG / Sonderforschungsbereich / Transregio (SFB / TRR)
URL: https://empkins.de/
EmpkinS iRTG - EmpkinS integrated Research Training Group
(Third Party Funds Group – Sub project)
Term: 1. July 2021 - 30. June 2025
Funding source: DFG / Sonderforschungsbereich / Integriertes Graduiertenkolleg (SFB / GRK)
URL: https://www.empkins.de/
The integrated Research Training Group (iRTG) offers all young researchers a structured framework programme and supports them in their scientific profile and competence development. The diverse measures provided enable the young researchers to work on their respective academic qualifications in a structured and targeted manner. Particular attention is paid to their networking and their ability to communicate intensively and to take responsibility for their own scientific work. The doctoral researchers are supervised by two project leaders.
Sensorbasierte Bewegungs- und Schlafanalyse beim Parkinson-Syndrom
(Third Party Funds Group – Sub project)
Term: 1. July 2021 - 30. June 2025
Funding source: DFG / Sonderforschungsbereich (SFB)
URL: https://www.empkins.de/
In D04, innovative, non-contact EmpkinS sensor technology using machine learning algorithms and multimodal reference diagnostics is evaluated using the example of Parkinson’s-associated sleep disorder patterns. For this purpose, body function parameters of sleep are technically validated with wearable sensor technology and non-contact EmpkinS sensor technology in comparison to classical poly-somnography and correlated to clinical scales. In an algorithmic approach, multiparametric sleep parameters and sleep patterns are then evalulated in correlation to movement, cardiovascular and sleep phase regulation disorders.
Empathokinästhetische Sensorik für Biofeedback bei depressiven Patienten
(Third Party Funds Group – Sub project)
Term: 1. July 2021 - 30. June 2025
Funding source: DFG / Sonderforschungsbereich (SFB)
URL: https://www.empkins.de/
The aim of the D02 project is the establishment of empathokinesthetic sensor technology and methods of machine learning as a means for the automatic detection and modification of depression-associated facial expressions, posture, and movement. The aim is to clarify to what extent, with the help of kinesthetic-related modifications influence depressogenic information processing and/or depressive symptoms. First, we will record facial expressions, body posture, and movement relevant to depression with the help of currently available technologies (e.g., RGB and depth cameras, wired EMG, established emotion recognition software) and use them as input parameters for new machine learning models to automatically detect depression-associated affect expressions. Secondly, a fully automated biofeedback paradigm is to be implemented and validated using the project results available up to that point. More ways of real-time feedback of depression-relevant kinaesthesia are investigated. Thirdly, we will research possibilities of mobile use of the biofeedback approach developed up to then.
Erforschung der posturalen Kontrolle basierend auf sensomotorisch erweiterten muskuloskelettalen Menschmodellen
(Third Party Funds Group – Sub project)
Term: 1. July 2021 - 30. June 2025
Funding source: DFG / Sonderforschungsbereich (SFB)
URL: https://www.empkins.de/
A novel postural control model of walking is explored to characterise the components of dynamic balance control. For this purpose, clinically annotated gait movements are used as input data and muscle actuated multi-body models are extended by a sensorimotor level. Neuromotor and control model parameters of (patho-)physiological movement are identified with the help of machine learning methods. Technical and clinical validation of the models will be performed. New EmpkinS measurement techniques are to be transferred to the developed models as soon as possible.
2024
2023
2022
2021
2020
Related Research Fields
Contact: