Thecentral nervous system (CNS) is our most complex organ system. Despite tremendousprogress in our understanding of the biochemical, electrical, and geneticregulation of CNS functioning and malfunctioning, many fundamental processesand diseases are still not fully understood. For example, axon growth patterns inthe developing brain can currently not be well-predicted based solely on thechemical landscape that neurons encounter, several CNS-related diseases cannotbe precisely diagnosed in living patients, and neuronal regeneration can stillnot be promoted after spinal cord injuries.Duringmany developmental and pathological processes, neurons and glial cells aremotile. Fundamentally, motion is drivenby forces. Hence, CNS cells mechanicallyinteract with their surrounding tissue. They adhere to neighbouring cells and extracellular matrix using celladhesion molecules, which provide friction, and generate forces usingcytoskeletal proteins. These forces aretransmitted to the outside world not only to locomote but also to probe themechanical properties of the environment, which has a long overseen huge impacton cell function.Onlyrecently, groups of several project leaders in this consortium, and a few other groupsworldwide, have discovered an important contribution of mechanical signalsto regulating CNS cell function. For example, they showed that brain tissuemechanics instructs axon growth and pathfinding in vivo, that mechanicalforces play an important role for cortical folding in the developing humanbrain, that the lack of remyelination in the aged brain is due to an increasein brain stiffness in vivo, and that many neurodegenerative diseases areaccompanied by changes in brain and spinal cord mechanics. These first insights strongly suggest thatmechanics contributes to many other aspects of CNS functioning, and it islikely that chemical and mechanical signals intensely interact at the cellularand tissue levels to regulate many diverse cellular processes.The CRC 1540 EBM synergises the expertise of engineers, physicists,biologists, medical researchers, and clinicians in Erlangen to explore mechanicsas an important yet missing puzzle stone in our understanding of CNSdevelopment, homeostasis, and pathology. Our strongly multidisciplinary teamwith unique expertise in CNS mechanics integrates advanced invivo, in vitro, and in silico techniques across time(development, ageing, injury/disease) and length (cell, tissue, organ) scalesto uncover how mechanical forces and mechanical cell and tissue properties,such as stiffness and viscosity, affect CNS function. We especially focus on(A) cerebral, (B) spinal, and (C) cellular mechanics. Invivo and in vitro studies provide a basic understanding ofmechanics-regulated biological and biomedical processes in different regions ofthe CNS. In addition, they help identify key mechano-chemical factors forinclusion in in silico models and provide data for model calibration andvalidation. In silico models, in turn, allow us to test hypotheses without the need of excessive or even inaccessibleexperiments. In addition, they enable the transfer and comparison of mechanics data and findingsacross species and scales. They also empower us to optimise processparameters for the development of in vitro brain tissue-like matricesand in vivo manipulation of mechanical signals, and, eventually, pavethe way for personalised clinical predictions. Insummary, we exploit mechanics-based approaches to advance ourunderstanding of CNS function and to provide the foundation for futureimprovement of diagnosis and treatment of neurological disorders.
Based on the theory of nonlinear continuum mechanics we model and simulate the complex mechanical behaviour of materials as well as transient processes such as growth, diffusion, or damage, to tackle open challenges in biomedical applications.
Research projects
Experimentelle und numerische Untersuchungen zur Alterung von Klebverbindungen unter zyklischer und hygrothermischer Beanspruchung im Stahl- und Anlagenbau
(Third Party Funds Single)
Funding source: Bundesministerium für Wirtschaft und Klimaschutz (BMWK)
Configurational Mechanics of Soft Materials: Revolutionising Geometrically Nonlinear Fracture
(Third Party Funds Single)
Funding source: Europäische Union (EU)
Wissenschaftliche Koordination und Finanzverwaltung (Z)
(Third Party Funds Group – Sub project)
Term: 1. January 2023 - 31. December 2026
Funding source: DFG / Sonderforschungsbereich (SFB)
Modellbasierter Abgleich von ex vivo und in vivo Testdaten (X01)
(Third Party Funds Group – Sub project)
Term: 1. January 2023 - 31. December 2026
Funding source: DFG / Sonderforschungsbereich (SFB)
Modellierung und Simulation der Mechanik von Zell-Matrix Interaktionen (C01)
(Third Party Funds Group – Sub project)
Term: 1. January 2023 - 31. December 2026
Funding source: DFG / Sonderforschungsbereich (SFB)
Modellierung und Simulation der Regeneration von Rückenmarksgewebe (B01)
(Third Party Funds Group – Sub project)
Term: 1. January 2023 - 31. December 2026
Funding source: DFG / Sonderforschungsbereich (SFB)
Exploring Brain Mechanics (EBM): Understanding, engineering and exploiting mechanical properties and signals in central nervous system development, physiology and pathology
(Third Party Funds Group – Overall project)
Funding source: DFG / Sonderforschungsbereich / Transregio (SFB / TRR)
URL: https://www.crc1540-ebm.research.fau.eu/
Ein numerisches Model für den translatorischen und rotatorischen Impulstransfer von weichen deformierbaren Mikropartikeln in verdünnten Zweiphasenströmungen
(Third Party Funds Single)
Funding source: DFG-Einzelförderung / Sachbeihilfe (EIN-SBH)
Teilprojekt P5 - Compressive Failure in Porous Materials
(Third Party Funds Group – Sub project)
Term: 2. January 2019 - 31. December 2027
Funding source: DFG / Graduiertenkolleg (GRK)
URL: https://www.frascal.research.fau.eu/home/research/p-5-compressive-failure-in-porous-materials/
Teilprojekt P10 - Configurational Fracture/Surface Mechanics
(Third Party Funds Group – Sub project)
Term: 2. January 2019 - 31. December 2027
Funding source: DFG / Graduiertenkolleg (GRK)
URL: https://www.frascal.research.fau.eu/home/research/p-10-configurational-fracture-surface-mechanics/
Fracture across Scales: Integrating Mechanics, Materials Science, Mathematics, Chemistry, and Physics (FRASCAL)
(Third Party Funds Group – Overall project)
Funding source: DFG / Graduiertenkolleg (GRK)
URL: https://www.frascal.research.fau.eu/
Mikroskalige Charakterisierungsmethoden zur Kalibrierung von Stoffgesetzen für Biomaterialien und Kunststoffe
(Own Funds)
teilweise aufwendig, in der Variation und Kontrolle der Umgebungsbedingungen anspruchsvoll oder in der räumlichen Auflösung begrenzt. Das Projekt beschäftigt sich
deshalb mit der Ertüchtigung hochauflösender Meßmethoden wie Nanoindentation oder Rastkraftmikroskopie und der komplementierenden Entwicklung numerischer
Verfahren zur Kalibrierung (Parameteridentifikation) inelastischer Stoffgesetze aus den Meßdaten. Inhärent anspruchsvoll sind dabei die geeignete Gestaltung der
Probekörper und ihrer Fixierung, die den gesuchten Eigenschaften angepaßte Versuchsführung und die hinreichend genaue Reproduktion derselben im Rahmen der zur
Parameteridentifikation erforderlichen Finite-Elemente-Simulationen.
Kontinuumsmechanische Modellierung und Simulation der Aushärtung und Inelastizität von Polymeren sowie Interphasen in Klebverbunden
(Own Funds)
sondern sie variieren teilweise erheblich mit dem verwendeten Aushärteregime und der Temperaturhistorie. Sie sind darüber hinaus vor allem in Verbundsituationen
u.U. sogar ortsabhängig von den Eigenschaften der Kontaktpartner beeinflußt, bilden also Eigenschaftgradienten (sog. Interphasen) aus.
Um diese Effekte bei der Simulation von Bauteilen korrekt abbilden zu können werden im Rahmen des Projektes Modelle entwickelt und erweitert,
die zeit-, orts- und umgebungsabhängige Materialeigenschaften wie Steifigkeitsevolutionen und -gradienten, Aushärteschrumpf und verschiedene Arten von
Inelastizität (Viskoelastizität, Elastoplastizität, Viskoplastizität, Schädigung) berücksichtigen können.
2025
2024
2023
2022
2021
2020
Related Research Fields
Contact: