Due to Europe's ageing society, there has been a dramatic increase in the occurrence of osteoporosis (OP) and related diseases. Sufferers have an impaired quality of life, and there is a considerable cost to society associated with the consequent loss of productivity and injuries. The current understanding of this disease needs to be revolutionized, but study has been hampered by a lack of means to properly characterize bone structure, remodeling dynamics and vascular activity. This project, 4D nanoSCOPE, will develop tools and techniques to permit time-resolved imaging and characterization of bone in three spatial dimensions (both in vitro and in vivo), thereby permitting monitoring of bone remodeling and revolutionizing the understanding of bone morphology and its function.
To advance the field, in vivo high-resolution studies of living bone are essential, but existing techniques are not capable of this. By combining state-of-the art image processing software with innovative 'precision learning' software methods to compensate for artefacts (due e.g. to the subject breathing or twitching), and innovative X-ray microscope hardware which together will greatly speed up image acquisition (aim is a factor of 100), the project will enable in vivo X-ray microscopy studies of small animals (mice) for the first time. The time series of three-dimensional X-ray images will be complemented by correlative microscopy and spectroscopy techniques (with new software) to thoroughly characterize (serial) bone sections ex vivo.
The resulting three-dimensional datasets combining structure, chemical composition, transport velocities and local strength will be used by the PIs and international collaborators to study the dynamics of bone microstructure. This will be the first time that this has been possible in living creatures, enabling an assessment of the effects on bone of age, hormones, inflammation and treatment.
One focus of our research is data acquisition (e.g. data from imaging MRI or CT, basic research, clinical trial data, digital applications Apps) and the distribution of data for analysis using AI methods to improve early diagnosis, differential diagnosis and prediction of the course of the disease of rheumatic diseases such as rheumatoid arthritis or psoriatic arthritis.
Research projects
Umfassende Charakterisierung von Patienten mit entzündlichen Knochenerkrankungen durch serologisches Profiling und Bildgebung (Z01)
(Third Party Funds Group – Sub project)
Term: 1. April 2024 - 31. December 2027
Funding source: DFG / Sonderforschungsbereich / Transregio (SFB / TRR)
Die Rolle von Typ-I-Interferon bei entzündlichen Knochenerkrankungen (C06)
(Third Party Funds Group – Sub project)
Term: 1. April 2024 - 31. December 2027
Funding source: DFG / Sonderforschungsbereich / Transregio (SFB / TRR)
Im Projekt C06 wird untersucht, wie ungebremstes Typ-I-IFN den entzündlichen Knochenverlust antreibt. Primäre Fibroblasten von Patienten mit IFIH1-Mutationen sezernieren große Mengen von VEGF, einem wichtigen Regulator des Knochens, was auf eine bisher nicht erkannte Verbindung zwischen Typ-I-IFN und VEGF in der Knochenhomöostase hindeutet. Ziel dieses Projekts ist es, einen Einblick in die Mechanismen der durch Typ-I-IFN vermittelten entzündlichen Knochenerkrankung zu gewinnen und neue Wege aufzuzeigen, die für therapeutische Eingriffe genutzt werden können.
Bewegungsmuster der Hand aus empathokinästhetischen Sensordaten als diagnostische Größe für Krankheitsaktivität bei Patienten mit rheumatischen Erkrankungen
(Third Party Funds Group – Sub project)
Term: 1. July 2021 - 30. June 2025
Funding source: DFG / Sonderforschungsbereich (SFB)
URL: https://www.empkins.de/
Unter standardisierten Bedingungen wird in D01 ein umfassender Datensatz zum aktuellen Erkrankungsstatus von Patienten (N = 150) mit RA und PsA in Kombination mit einer umfangreichen klinischen Testbatterie von Handfunktion sowie auch Vergleichsdaten einer gesunden Kohorte (N = 75) erhoben. Die parallele Erfassung von Handfunktion mittels „state-of-the-art“ Motion-Capture-Sensorik bietet eine kritische Grundlage für die experimentelle Evaluation und integrierte Dateninterpretation der neuartigen Sensordaten (TPe A01, A02 und A03), die bei der Erfassung von Handfunktion mittels EmpkinS in der 2. Hälfte der 1. Förderperiode erfasst werden.
Advancing osteoporosis medicine by observing bone microstructure and remodelling using a four-dimensional nanoscope
(Third Party Funds Single)
Funding source: European Research Council (ERC)
URL: https://cordis.europa.eu/project/id/810316
Due to Europe's ageing society, there has been a dramatic increase in the occurrence of osteoporosis (OP) and related diseases. Sufferers have an impaired quality of life, and there is a considerable cost to society associated with the consequent loss of productivity and injuries. The current understanding of this disease needs to be revolutionized, but study has been hampered by a lack of means to properly characterize bone structure, remodeling dynamics and vascular activity. This project, 4D nanoSCOPE, will develop tools and techniques to permit time-resolved imaging and characterization of bone in three spatial dimensions (both in vitro and in vivo), thereby permitting monitoring of bone remodeling and revolutionizing the understanding of bone morphology and its function.
To advance the field, in vivo high-resolution studies of living bone are essential, but existing techniques are not capable of this. By combining state-of-the art image processing software with innovative 'precision learning' software methods to compensate for artefacts (due e.g. to the subject breathing or twitching), and innovative X-ray microscope hardware which together will greatly speed up image acquisition (aim is a factor of 100), the project will enable in vivo X-ray microscopy studies of small animals (mice) for the first time. The time series of three-dimensional X-ray images will be complemented by correlative microscopy and spectroscopy techniques (with new software) to thoroughly characterize (serial) bone sections ex vivo.
The resulting three-dimensional datasets combining structure, chemical composition, transport velocities and local strength will be used by the PIs and international collaborators to study the dynamics of bone microstructure. This will be the first time that this has been possible in living creatures, enabling an assessment of the effects on bone of age, hormones, inflammation and treatment.
2024
2023
2022
2021
2020
Related Research Fields
Contact: